Structure function of the β-barrel domain of F1-ATPase in the yeast Saccharomyces cerevisiae

被引:13
作者
Bakhtiari, N [1 ]
Jie, LZ [1 ]
Yao, BY [1 ]
Mueller, DM [1 ]
机构
[1] Finch Univ Hlth Sci Chicago Med Sch, Dept Biochem & Mol Biol, N Chicago, IL 60064 USA
关键词
D O I
10.1074/jbc.274.23.16363
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The first 90 amino acids of the alpha- and beta-subunits of mitochondrial F-1-ATPase are folded into beta-barrel dor mains and were postulated to be important for stabilizing the enzyme (Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), The role of the domains was studied by making chimeric enzymes, replacing the domains from the yeast Saccharomyces cerevisiae enzyme with the corresponding domains from the enzyme of the thermophilic bacterium Bacillus PS3, The enzymes containing the chimeric alpha-, beta-, or alpha- and beta-subunits were not functional. However, gain-of-function mutations were obtained from the strain containing the enzyme with the chimeric PS3/yeast beta-subunit, The gain-of-function mutations were all in codons encoding the beta-barrel domain of the beta-subunit, and the residues appear to map out a region of subunit-subunit interactions. Gain-of-function mutations were also obtained that provided functional expression of the chimeric PS3/ yeast alpha- and beta-subunits together. Biochemical analysis of this active chimeric enzyme indicated that it was not significantly more thermostable or labile than the wild type. The results of this study indicate that the beta-barrel domains form critical contacts (distinct from those between the alpha- and beta-subunits) that are important for the assembly of the ATP synthase.
引用
收藏
页码:16363 / 16369
页数:7
相关论文
共 41 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   IDENTIFICATION OF 2 NUCLEAR GENES (ATP11, ATP12) REQUIRED FOR ASSEMBLY OF THE YEAST F1-ATPASE [J].
ACKERMAN, SH ;
TZAGOLOFF, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (13) :4986-4990
[3]   ATP synthase of yeast mitochondria -: Isolation of subunit j and disruption of the ATP18 gene [J].
Arnold, I ;
Pfeiffer, K ;
Neupert, W ;
Stuart, RA ;
Schägger, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (01) :36-40
[4]   ATP synthase of yeast mitochondria - Isolation of the subunit h and disruption of the ATP14 gene [J].
Arselin, G ;
Vaillier, J ;
Graves, PV ;
Velours, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20284-20290
[5]   The 2.8-Å structure of rat liver F1-ATPase:: Configuration of a critical intermediate in ATP synthesis/hydrolysis [J].
Bianchet, MA ;
Hullihen, J ;
Pedersen, PL ;
Amzel, LM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (19) :11065-11070
[6]   Direct indication for the existence of a double stalk in CF0F1 [J].
Böttcher, B ;
Schwarz, L ;
Gräber, P .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 281 (05) :757-762
[7]   EFFECT OF DISULFIDE CROSS-LINKING BETWEEN ALPHA-SUBUNITS AND DELTA-SUBUNITS ON THE PROPERTIES OF THE F1 ADENOSINE-TRIPHOSPHATASE OF ESCHERICHIA-COLI [J].
BRAGG, PD ;
HOU, C .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 851 (03) :385-394
[8]   COMPLEMENTATION OF ESCHERICHIA-COLI UNCD MUTANT STRAINS BY A CHIMERIC F-1-BETA SUBUNIT CONSTRUCTED FROM ESCHERICHIA-COLI AND SPINACH CHLOROPLAST F-1-BETA [J].
BURKOVSKI, A ;
LILL, H ;
ENGELBRECHT, S .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1186 (03) :243-246
[9]   MITOCHONDRIAL HEAT-SHOCK PROTEIN HSP60 IS ESSENTIAL FOR ASSEMBLY OF PROTEINS IMPORTED INTO YEAST MITOCHONDRIA [J].
CHENG, MY ;
HARTL, FU ;
MARTIN, J ;
POLLOCK, RA ;
KALOUSEK, F ;
NEUPERT, W ;
HALLBERG, EM ;
HALLBERG, RL ;
HORWICH, AL .
NATURE, 1989, 337 (6208) :620-625
[10]   The F1F0-ATPase complex from bovine heart mitochondria: The molar ratio of the subunits in the stalk region linking the F-1 and F-0 domains [J].
Collinson, IR ;
Skehel, JM ;
Fearnley, IM ;
Runswick, MJ ;
Walker, JE .
BIOCHEMISTRY, 1996, 35 (38) :12640-12646