From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites

被引:65
作者
Saralegi, A. [1 ]
Rueda, L. [1 ]
Martin, L. [1 ]
Arbelaiz, A. [1 ]
Eceiza, A. [1 ]
Corcuera, M. A. [1 ]
机构
[1] Univ Basque Country UPV EHU, Polytech Sch, Dept Chem & Environm Engn, Mat Technol Grp, Donostia San Sebastian 20018, Spain
关键词
Particle-reinforced composites; Nano composites; Cellulose nanocrystal; Casting; Mechanical properties; CURRENT INTERNATIONAL RESEARCH; CELLULOSE NANOCRYSTALS; POLYMER NANOCOMPOSITES; MORPHOLOGY; STRENGTH; REINFORCEMENT; NANOFIBRES; TRANSITION; BEHAVIOR; WHISKERS;
D O I
10.1016/j.compscitech.2013.08.025
中图分类号
TB33 [复合材料];
学科分类号
摘要
Bionanocomposites with high content of carbon coming from renewable resources were synthesized. Different cellulose nanocrystal (CNC) contents were added by solvent casting procedure to highly crystalline bio-based polyurethanes with different soft/hard segment ratios. Properties of the resulting bionanocomposites were evaluated in order to study the effect of both CNC content and polyurethane soft/hard segment ratio on the structure/properties relationships. Thereby, from elastomeric to rigid polyurethane/CNC bionanocomposites containing 1, 3, 5 and 10 wt% of CNC and bio-based polyurethanes with 17 and 46 wt% of hard segment content were prepared. CNC were isolated by sulphuric acid hydrolysis, obtaining rod-like crystalline structures. A good dispersion of CNC was obtained for all the bionanocomposites, which interact with the polyurethane segment that was not associated in ordered domains. Thermomechanical and tensile tests revealed that those bionanocomposites presented good mechanical properties, competing with petrochemical based nanocomposites. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 49 条
[1]   Characterization of nanocellulose-reinforced shape memory polyurethanes [J].
Auad, Maria L. ;
Contos, Vasili S. ;
Nutt, Steve ;
Aranguren, Mirta I. ;
Marcovich, Norma E. .
POLYMER INTERNATIONAL, 2008, 57 (04) :651-659
[2]   Polyaniline-modified cellulose nanofibrils as reinforcement of a smart polyurethane [J].
Auad, Maria L. ;
Richardson, Tara ;
Orts, William J. ;
Medeiros, Eliton S. ;
Mattoso, Luiz H. C. ;
Mosiewicki, Mirna A. ;
Marcovich, Norma E. ;
Aranguren, Mirta I. .
POLYMER INTERNATIONAL, 2011, 60 (05) :743-750
[3]   Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol [J].
Bondeson, Daniel ;
Oksman, Kristiina .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (12) :2486-2492
[4]   New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane [J].
Cao, Xiaodong ;
Dong, Hua ;
Li, Chang Ming .
BIOMACROMOLECULES, 2007, 8 (03) :899-904
[5]   One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites [J].
Cao, Xiaodong ;
Habibi, Youssef ;
Lucia, Lucian A. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (38) :7137-7145
[6]   High-Strength Composites Based on Tung Oil Polyurethane and Wood Flour: Effect of the Filler Concentration on the Mechanical Properties [J].
Casado, U. ;
Marcovich, N. E. ;
Aranguren, M. I. ;
Mosiewicki, M. A. .
POLYMER ENGINEERING AND SCIENCE, 2009, 49 (04) :713-721
[7]   Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications [J].
Cherian, Bibin Mathew ;
Leao, Alcides Lopes ;
de Souza, Sivoney Ferreira ;
Manzine Costa, Ligia Maria ;
de Olyveira, Gabriel Molina ;
Kottaisamy, M. ;
Nagarajan, E. R. ;
Thomas, Sabu .
CARBOHYDRATE POLYMERS, 2011, 86 (04) :1790-1798
[8]   Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites [J].
Dong, XM ;
Kimura, T ;
Revol, JF ;
Gray, DG .
LANGMUIR, 1996, 12 (08) :2076-2082
[9]   Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose [J].
Dong, XM ;
Revol, JF ;
Gray, DG .
CELLULOSE, 1998, 5 (01) :19-32
[10]  
Ehrenstein G., 2001, Polymeric Materials Structure, Properties, Applications