Microfluidic platform for controlled synthesis of polymeric nanoparticles

被引:683
作者
Karnik, Rohit [3 ]
Gu, Frank [4 ]
Basto, Pamela [4 ,5 ]
Cannizzaro, Christopher [4 ]
Dean, Lindsey [4 ]
Kyei-Manu, William [4 ]
Langer, Robert [4 ,5 ,6 ]
Farokhzad, Omid C. [1 ,2 ,6 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Lab Nanomed & Biomat, Boston, MA 02115 USA
[2] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Anesthesiol, Boston, MA 02115 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[5] Harvard MIT Div Hlth Sci & Technol, MIT, Cambridge, MA 02139 USA
[6] MIT Harvard Ctr Canc Nanotechnol Excellence, MIT, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1021/nl801736q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A central challenge in the development of drug-encapsulated polymeric nanoparticles is the inability to control the mixing processes required for their synthesis resulting in variable nanoparticle physicochemical properties. Nanoparticles may be developed by mixing and nanoprecipitation of polymers and drugs dissolved in organic solvents with nonsolvents. We used rapid and tunable mixing through hydrodynamic flow focusing in microfluidic channels to control nanoprecipitation of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) diblock copolymers as a model polymeric biomaterial for drug delivery. We demonstrate that by varying (1) flow rates, (2) polymer composition, and (3) polymer concentration we can optimize the size, improve polydispersity, and control drug loading and release of the resulting nanoparticles. This work suggests that microfluidics may find applications for the development and optimization of polymeric nanoparticles in the newly emerging field of nanomedicine.
引用
收藏
页码:2906 / 2912
页数:7
相关论文
共 28 条
[1]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[2]  
Avgoustakis Konstantinos, 2004, Current Drug Delivery, V1, P321, DOI 10.2174/1567201043334605
[3]   High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets [J].
Chan, EM ;
Alivisatos, AP ;
Mathies, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (40) :13854-13861
[4]   Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery [J].
Cheng, Jianjun ;
Teply, Benjamin A. ;
Sherifi, Ines ;
Sung, Josephine ;
Luther, Gaurav ;
Gu, Frank X. ;
Levy-Nissenbaum, Etgar ;
Radovic-Moreno, Aleksandar F. ;
Langer, Robert ;
Farokhzad, Omid C. .
BIOMATERIALS, 2007, 28 (05) :869-876
[5]   Adriamycin release from poly(lactide-co-glycolide)-polyethylene glycol nanoparticles: synthesis, and in vitro characterization [J].
Davaran, Soodabeh ;
Rashidi, Mohammad R. ;
Pourabbas, Behzad ;
Dadashzadeh, Mahin ;
Haghshenas, Naser Moti .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2006, 1 (04) :535-539
[6]   Synthesis of monodisperse biodegradable microgels in microfluidic devices [J].
De Geest, BG ;
Urbanski, JP ;
Thorsen, T ;
Demeester, J ;
De Smedt, SC .
LANGMUIR, 2005, 21 (23) :10275-10279
[7]  
DEMELLO A, 2006, Patent No. 7252814
[8]   Control and detection of chemical reactions in microfluidic systems [J].
deMello, Andrew J. .
NATURE, 2006, 442 (7101) :394-402
[9]   Microscale reactors: nanoscale products [J].
DeMello, J ;
DeMello, A .
LAB ON A CHIP, 2004, 4 (02) :11N-15N
[10]   Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo [J].
Farokhzad, OC ;
Cheng, JJ ;
Teply, BA ;
Sherifi, I ;
Jon, S ;
Kantoff, PW ;
Richie, JP ;
Langer, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (16) :6315-6320