Antibacterial surfaces: the quest for a new generation of biomaterials

被引:758
作者
Hasan, Jafar [1 ]
Crawford, Russell J. [1 ]
Lvanova, Elena P. [1 ]
机构
[1] Swinburne Univ Technol, Fac Life & Social Sci, Hawthorn, Vic 3122, Australia
关键词
antibacterial; antibiofouling; bactericidal; surface chemistry; topography; nanotopography; QUATERNARY AMMONIUM-COMPOUNDS; BIOFILM FORMATION; PSEUDOMONAS-AERUGINOSA; ANTIMICROBIAL POLYMERS; STAPHYLOCOCCUS-AUREUS; MULTILAYER COATINGS; BACTERIAL BIOFILMS; CONTROLLED-RELEASE; MEDICAL DEVICES; SILVER;
D O I
10.1016/j.tibtech.2013.01.017
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this review we attempt to clarify the notion of what is meant by the term antibacterial surfaces and categorise the approaches that are commonly used in the design of antibacterial surfaces. Application of surface coatings and the modification of the surface chemistry of substrata are generally considered to be a chemical approach to surface modification (as are surface polymerisation, functionalisation, and derivatisation), whereas, modification of the surface architecture of a substrate can be considered a physical approach. Here, the antifouling and bactericidal effects of antibacterial surfaces are briefly discussed. Finally, several recent efforts to design a new generation of antibacterial surfaces, which are based on mimicking the surface nanotopography of natural surfaces, are considered.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 82 条
[1]   Silver nanoparticle applications and human health [J].
Ahamed, Maqusood ;
AlSalhi, Mohamad S. ;
Siddiqui, M. K. J. .
CLINICA CHIMICA ACTA, 2010, 411 (23-24) :1841-1848
[2]   Covalent Immobilization of Antibacterial Furanones via Photochemical Activation of Perfluorophenylazide [J].
Al-Bataineh, Sameer A. ;
Luginbuehl, Reto ;
Textor, Marcus ;
Yan, Mingdi .
LANGMUIR, 2009, 25 (13) :7432-7437
[3]   The interaction of cells and bacteria with surfaces structured at the nanometre scale [J].
Anselme, K. ;
Davidson, P. ;
Popa, A. M. ;
Giazzon, M. ;
Liley, M. ;
Ploux, L. .
ACTA BIOMATERIALIA, 2010, 6 (10) :3824-3846
[4]   Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials [J].
Arciola, Carla Renata ;
Campoccia, Davide ;
Speziale, Pietro ;
Montanaro, Lucio ;
Costerton, John William .
BIOMATERIALS, 2012, 33 (26) :5967-5982
[5]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[6]   Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms [J].
Bazaka, Kateryna ;
Jacob, Mohan V. ;
Crawford, Russell J. ;
Ivanova, Elena P. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 95 (02) :299-311
[7]   Do bacteria differentiate between degrees of nanoscale surface roughness? [J].
Bazaka, Kateryna ;
Crawford, Russell J. ;
Ivanova, Elena P. .
BIOTECHNOLOGY JOURNAL, 2011, 6 (09) :1103-1114
[8]   Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment [J].
Bazaka, Kateryna ;
Jacob, Mohan V. ;
Crawford, Russell J. ;
Ivanova, Elena P. .
ACTA BIOMATERIALIA, 2011, 7 (05) :2015-2028
[9]   Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles [J].
Beyth, Nurit ;
Houri-Haddad, Yael ;
Baraness-Hadar, Liat ;
Yudovin-Farber, Ira ;
Domb, Abraham J. ;
Weiss, Ervin I. .
BIOMATERIALS, 2008, 29 (31) :4157-4163
[10]   Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: Towards better biosensors and a new generation of medical implants [J].
Bilek M.M. ;
McKenzie D.R. .
Biophysical Reviews, 2010, 2 (2) :55-65