Coulomb blockade behaviors in individual Au nanoparticles as observed through noncontact atomic force spectroscopy at room temperature

被引:4
作者
Hattori, Shigeki [1 ]
Kano, Shinya [1 ,4 ]
Azuma, Yasuo [1 ,4 ]
Tanaka, Daisuke [2 ,4 ]
Sakamoto, Masanori [2 ,4 ]
Teranishi, Toshiharu [2 ,3 ,4 ]
Majima, Yutaka [1 ,4 ,5 ]
机构
[1] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan
[2] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
[3] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[4] CREST JST, Yokohama, Kanagawa 2268503, Japan
[5] Sunchon Natl Univ, Dept Printed Elect Engn, Sunchon 540742, South Korea
关键词
SINGLE-ELECTRON TRANSISTOR; BARRIER TUNNELING STRUCTURES; SELF-ASSEMBLED MONOLAYERS; GOLD NANOPARTICLES; NANOMETER SEPARATION; DISPLACEMENT CURRENT; SIZE EVOLUTION; SURFACE-CHARGE; SOLID-STATE; MICROSCOPY;
D O I
10.1088/0957-4484/23/18/185704
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Coulomb blockade behaviors in individual Au nanoparticles of 2 nm core diameter in double-barrier structures have been studied by means of noncontact atomic force spectroscopy (NC-AFS) at room temperature. The Au nanoparticles with a 1-decanethiol ligand were chemisorbed by 1,10-decanedithiol molecules of a mixed 1-octanethiol/1,10-decanedithiol self-assembled monolayer coated on a Au(111) surface; these particles were observed through NC-AFS. NC-AFS measurements of the cantilever frequency shift-sample voltage (Delta f-V-S) curves were sequentially conducted on three Au nanoparticles under the same experimental conditions; the Delta f-V-S curves were found to deviate from the parabolic (Delta f(N)) curve in the cases where no extra charge existed on the Au core. The experimental Delta f(CB)(= Delta f - Delta f(N)) and Delta f(CB)/V curves agree well with the theoretical curves obtained using a golden-rule calculation and the same parabolic parameters. All the results, through NC-AFS, suggest Coulomb blockade behaviors in the Au nanoparticles at room temperature.
引用
收藏
页数:9
相关论文
共 64 条
[1]   ''Coulomb staircase'' at room temperature in a self-assembled molecular nanostructure [J].
Andres, RP ;
Bein, T ;
Dorogi, M ;
Feng, S ;
Henderson, JI ;
Kubiak, CP ;
Mahoney, W ;
Osifchin, RG ;
Reifenberger, R .
SCIENCE, 1996, 272 (5266) :1323-1325
[2]   Observation of electronic states on Si(111)-(7 x 7) through short-range attractive force with noncontact atomic force spectroscopy [J].
Arai, T ;
Tomitori, M .
PHYSICAL REVIEW LETTERS, 2004, 93 (25)
[3]   Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor [J].
Armour, AD ;
Blencowe, MP ;
Zhang, Y .
PHYSICAL REVIEW B, 2004, 69 (12)
[4]  
Averin D. V., 1991, Mesoscopic Phenomena in Solids, P173
[5]   Single electron on a nanodot in a double-barrier tunneling structure observed by noncontact atomic-force spectroscopy [J].
Azuma, Y ;
Kanehara, M ;
Teranishi, T ;
Majima, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (01)
[6]  
Bammerlin M., 1997, PROBE MICROSCOPY, V1, P3
[7]   THEORY OF COULOMB-BLOCKADE OSCILLATIONS IN THE CONDUCTANCE OF A QUANTUM DOT [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW B, 1991, 44 (04) :1646-1656
[8]   Polarization effects in noncontact atomic force microscopy: A key to model the tip-sample interaction above charged adatoms [J].
Bocquet, Franck ;
Nony, Laurent ;
Loppacher, Christian .
PHYSICAL REVIEW B, 2011, 83 (03)
[9]   Metal-nanoparticle single-electron transistors fabricated using electromigration [J].
Bolotin, KI ;
Kuemmeth, F ;
Pasupathy, AN ;
Ralph, DC .
APPLIED PHYSICS LETTERS, 2004, 84 (16) :3154-3156
[10]   Nanoscale charging hysteresis measurement by multifrequency electrostatic force spectroscopy [J].
Bostanci, Umut ;
Abak, M. Kurtulus ;
Aktas, O. ;
Dana, A. .
APPLIED PHYSICS LETTERS, 2008, 92 (09)