Effective oligonucleotide-mediated gene disruption in ES cells lacking the mismatch repair protein MSH3

被引:37
作者
Dekker, M
Brouwers, C
Aarts, M
van der Torre, J
de Vries, S
de Vrugt, HV
te Riele, H
机构
[1] Netherlands Canc Inst, Div Mol Biol, NL-1066 CX Amsterdam, Netherlands
[2] Free Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands
关键词
oligo targeting; gene repair; gene disruption; mismatch repair; ES cells;
D O I
10.1038/sj.gt.3302689
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have previously demonstrated that site-specific insertion, deletion or substitution of one or two nucleotides in mouse embryonic stem cells (ES cells) by single-stranded deoxyribo-oligonucleotides is several hundred-fold suppressed by DNA mismatch repair (MMR) activity. Here, we have investigated whether compound mismatches and larger insertions escape detection by the MMR machinery and can be effectively introduced in MMR-proficient cells. We identified several compound mismatches that escaped detection by the MMR machinery to some extent, but could not define general rules predicting the efficacy of complex base-pair substitutions. In contrast, we found that four-nucleotide insertions were largely subject to suppression by the MSH2/MSH3 branch of MMR and could be effectively introduced in Msh3-deficient cells. As these cells have no overt mutator phenotype and Msh3-deficient mice do not develop cancer, Msh3-deficient ES cells can be used for oligonucleotide-mediated gene disruption. As an example, we present disruption of the Fanconi anemia gene Fancf.
引用
收藏
页码:686 / 694
页数:9
相关论文
共 25 条
[1]   Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA-DNA oligonucleotide [J].
Alexeev, V ;
Yoon, K .
NATURE BIOTECHNOLOGY, 1998, 16 (13) :1343-1346
[2]   DNA replication and transcription direct a DNA strand bias in the process of targeted gene repair in mammalian cells [J].
Brachman, EE ;
Kmiec, EB .
JOURNAL OF CELL SCIENCE, 2004, 117 (17) :3867-3874
[3]   Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks [J].
Brachman, EE ;
Kmiec, EB .
DNA REPAIR, 2005, 4 (04) :445-457
[4]  
CAMPBELL C R, 1989, New Biologist, V1, P223
[5]   Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide [J].
ColeStrauss, A ;
Yoon, KG ;
Xiang, YF ;
Byrne, BC ;
Rice, MC ;
Gryn, J ;
Holloman, WK ;
Kmiec, EB .
SCIENCE, 1996, 273 (5280) :1386-1389
[6]   Enhanced levels of λ red-mediated recombinants in mismatch repair mutants [J].
Costantino, N ;
Court, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (26) :15748-15753
[7]   HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and MSh6 mismatch-repair protein functions [J].
de Wind, N ;
Dekker, M ;
Claij, N ;
Jansen, L ;
van Klink, Y ;
Radman, M ;
Riggins, G ;
van der Valk, M ;
van 't Wout, K ;
Riele, HT .
NATURE GENETICS, 1999, 23 (03) :359-362
[8]   Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides [J].
Dekker, M ;
Brouwers, C ;
Riele, HT .
NUCLEIC ACIDS RESEARCH, 2003, 31 (06)
[9]   INACTIVATION OF THE MOUSE MSH2 GENE RESULTS IN MISMATCH REPAIR DEFICIENCY, METHYLATION TOLERANCE, HYPERRECOMBINATION, AND PREDISPOSITION TO CANCER [J].
DEWIND, N ;
DEKKER, M ;
BERNS, A ;
RADMAN, M ;
RIELE, HT .
CELL, 1995, 82 (02) :321-330
[10]   High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides [J].
Ellis, HM ;
Yu, DG ;
DiTizio, T ;
Court, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6742-6746