Contact effects in graphene nanoribbon transistors

被引:65
作者
Liang, Gengchiau [1 ]
Neophytou, Neophytos [2 ]
Lundstrom, Mark S. [2 ]
Nikonov, Dmitri E. [3 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
关键词
D O I
10.1021/nl080255r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effects of the various contact types and shapes on the performance of Schottky barrier graphene nanoribbon field-effect-transistors (GNRFETs) have been investigated using a real-space quantum transport simulator based on the NEGF approach self-consistently coupled to a three-dimensional Poisson solver for treating the electrostatics. The device channel considered is a double gate semiconducting armchair nanoribbon. The types of contacts considered are (a) a semi-infinite normal metal, (b) a semi-infinite graphene sheet, (c) finite size rectangular shape armchair graphene contacts, (d) finite size wedge shape graphene contacts, and (e) zigzag graphene nanoribbon contacts. Among these different contact types, the semi-infinite graphene sheet contacts show the worst performance because of their very low density of states around the Dirac point resulting in low transmission possibility through the Schottky barrier, both at ON and OFF states. Although all other types of contacts can have significant enhancement in I-ON to I-OFF ratio, the zigzag GNR contacts show promising and size invariant performance due to the metallic properties.
引用
收藏
页码:1819 / 1824
页数:6
相关论文
共 28 条
[1]   Building blocks for integrated graphene circuits [J].
Areshkin, Denis A. ;
White, Carter T. .
NANO LETTERS, 2007, 7 (11) :3253-3259
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502
[4]  
Datta S., 1997, Electronic Transport in Mesoscopic Systems
[5]   Simulation of graphene nanoribbon field-effect transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :760-762
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   A computational study of thin-body, double-gate, Schottky barrier MOSFETs [J].
Guo, J ;
Lundstrom, MS .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (11) :1897-1902
[8]  
GUO J, 2005, THESIS PURDUE U
[9]   A graphene field-effect device [J].
Lemme, Max C. ;
Echtermeyer, Tim J. ;
Baus, Matthias ;
Kurz, Heinrich .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (04) :282-284
[10]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232