Label-free and reagent-less protein biosensing using aptamer-modified extended-gate field-effect transistors

被引:62
作者
Goda, Tatsuro [1 ]
Miyahara, Yuji [1 ]
机构
[1] Tokyo Med & Dent Univ, Inst Biomat & Bioengn, Chiyoda Ku, Tokyo 1010062, Japan
关键词
Aptamer; Potentiometry; Extended-gate field-effect transistor; Label-free protein biosensing; Self-assembled monolayer; ADSORPTION; MOLECULES; QUANTITATION; THROMBIN; SURFACE; ARRAYS; BIND;
D O I
10.1016/j.bios.2013.01.053
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We have developed biosensors based on an aptamer-modified field-effect transistor (FET) for the detection of lysozyme and thrombin. An oligonucleotide aptamer as a sensitive and specific ligand for these model proteins was covalently immobilized on a gold electrode extended to the gate of FET together with thiol molecules to make a densely packed self-assembled monolayer (SAM). The aptamer-based potentiometry was achieved in a multi-parallel way using a microelectrodes array format of the gate electrode. A change in the gate potential was monitored in real-time after introduction of a target protein at various concentrations to the functionalized electrodes in a buffer solution. Specific protein binding altered the charge density at the gate/solution interface, i.e., interface potential, because of the intrinsic local net-charges of the captured protein. The potentiometry successfully determined the lysozyme and thrombin on the solid phase with their dynamic ranges 15.2-1040 nM and 13.4-1300 nM and the limit of detection of 12.0 nM and 6.7 nM, respectively. Importantly, robust signals were obtained by the specific protein recognition even in the spiked 10% fetal bovine serum (FBS) conditions. The technique herein described is all within a complementary metal oxide semiconductor (CMOS) compatible format, and is thus promising for highly efficient and low cost manufacturing with the readiness of downsizing and integration by virtue of advanced semiconductor processing technologies. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 47 条
[1]   Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors [J].
An, Taechang ;
Kim, Ki Su ;
Hahn, Sei Kwang ;
Lim, Geunbae .
LAB ON A CHIP, 2010, 10 (16) :2052-2056
[2]   Thirty years of ISFETOLOGY - What happened in the past 30 years and what may happen in the next 30 years [J].
Bergveld, P .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 88 (01) :1-20
[3]   SELECTION OF SINGLE-STRANDED-DNA MOLECULES THAT BIND AND INHIBIT HUMAN THROMBIN [J].
BOCK, LC ;
GRIFFIN, LC ;
LATHAM, JA ;
VERMAAS, EH ;
TOOLE, JJ .
NATURE, 1992, 355 (6360) :564-566
[4]   Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications [J].
Byon, HR ;
Choi, HC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) :2188-2189
[5]   A SIMPLE ALGORITHM FOR THE CALCULATION OF THE ELECTROSTATIC REPULSION BETWEEN IDENTICAL CHARGED SURFACES IN ELECTROLYTE [J].
CHAN, DYC ;
PASHLEY, RM ;
WHITE, LR .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1980, 77 (01) :283-285
[6]   Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation [J].
Chen, Kuan-I ;
Li, Bor-Ran ;
Chen, Yit-Tsong .
NANO TODAY, 2011, 6 (02) :131-154
[7]   Aptamer-based biosensors for label-free voltammetric detection of lysozyme [J].
Cheng, Alan K. H. ;
Ge, Bixia ;
Yu, Hua-Zhong .
ANALYTICAL CHEMISTRY, 2007, 79 (14) :5158-5164
[8]   Study on extended gate field effect transistor with tin oxide sensing membrane [J].
Chi, LL ;
Chou, JC ;
Chung, WY ;
Sun, TP ;
Hsiung, SK .
MATERIALS CHEMISTRY AND PHYSICS, 2000, 63 (01) :19-23
[9]   Label-Free Sub-picomolar Protein Detection with Field-Effect Transistors [J].
Estrela, Pedro ;
Paul, Debjani ;
Song, Qifeng ;
Stadler, Lukas K. J. ;
Wang, Ling ;
Huq, Ejaz ;
Davis, Jason J. ;
Ferrigno, Paul Ko ;
Migliorato, Piero .
ANALYTICAL CHEMISTRY, 2010, 82 (09) :3531-3536
[10]   Aptamer Modules as Sensors and Detectors [J].
Famulok, Michael ;
Mayer, Guenter .
ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (12) :1349-1358