Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications

被引:60
作者
Rossi, Simona [1 ,2 ]
Sevignani, Cinzia [3 ]
Nnadi, Stephanie C. [3 ]
Siracusa, Linda D. [3 ]
Calin, George A. [1 ,4 ]
机构
[1] Univ Texas Houston, MD Anderson Canc Ctr, Dept Expt Therapeut, Houston, TX 77030 USA
[2] Univ Ferrara, Dept Morphol & Embryol, I-44100 Ferrara, Italy
[3] Thomas Jefferson Univ, Dept Microbiol & Immunol, Kimmel Canc Ctr, Philadelphia, PA 19107 USA
[4] Univ Texas Houston, MD Anderson Canc Ctr, Dept Canc Genet, Houston, TX 77030 USA
关键词
D O I
10.1007/s00335-008-9119-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs, RNAs that do not code for proteins) that regulate the expression of target genes at the posttranscriptional or posttranslational level. Many miRNAs have conserved sequences between distantly related organisms, suggesting that these molecules participate in essential developmental and physiologic processes. miRNAs can act as tumor suppressor genes or oncogenes in human cancers. Mutations, deletions, or amplifications have been found in human cancers and shown to alter expression levels of mature and/or precursor miRNA transcripts. Moreover, a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Both miRNAs and UCRs are frequently located at fragile sites and genomic regions affected in various cancers, named cancer-associated genomic regions (CAGRs). Bioinformatics studies are emerging as important tools to identify associations and/or correlations between miRNAs/ncRNAs and CAGRs. ncRNA profiling has allowed the identification of specific signatures associated with diagnosis, prognosis, and response to treatment of human tumors. Several abnormalities could contribute to the alteration of miRNA expression profiles in each kind of tumor and in each kind of tissue. This review is focused on the miRNAs and ncRNAs as genes affecting cancer risk, and we provided an updated catalog of miRNAs and UCRs located at fragile sites or at cancer susceptibility loci. These types of studies are the first step toward discoveries leading to novel approaches for cancer therapies.
引用
收藏
页码:526 / 540
页数:15
相关论文
共 70 条
[1]   RTCGD: retroviral tagged cancer gene database [J].
Akagi, K ;
Suzuki, T ;
Stephens, RM ;
Jenkins, NA ;
Copeland, NG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D523-D527
[2]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[3]   MicroRNAs and cancer: Profile, profile, profile [J].
Barbarotto, Elisa ;
Schmittgen, Thomas D. ;
Calin, George A. .
INTERNATIONAL JOURNAL OF CANCER, 2008, 122 (05) :969-977
[4]   Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J].
Baskerville, S ;
Bartel, DP .
RNA, 2005, 11 (03) :241-247
[5]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[6]   Genome wide analysis of retroviral DNA integration [J].
Bushman, F ;
Lewinski, M ;
Ciuffi, A ;
Barr, S ;
Leipzig, J ;
Hannenhalli, S ;
Hoffmann, C .
NATURE REVIEWS MICROBIOLOGY, 2005, 3 (11) :848-858
[7]   Sizing up miRNAs as cancer genes [J].
Caldas, C ;
Brenton, JD .
NATURE MEDICINE, 2005, 11 (07) :712-714
[8]  
CALIN G, 1994, ONCOL REP, V1, P987
[9]   MicroRNAs and chromosomal abnormalities in cancer cells [J].
Calin, G. A. ;
Croce, C. M. .
ONCOGENE, 2006, 25 (46) :6202-6210
[10]   Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J].
Calin, GA ;
Sevignani, C ;
Dan Dumitru, C ;
Hyslop, T ;
Noch, E ;
Yendamuri, S ;
Shimizu, M ;
Rattan, S ;
Bullrich, F ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2999-3004