Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

被引:137
作者
Bessa, Ricardo J. [1 ,2 ]
Miranda, Vladimiro [1 ,2 ]
Botterud, Audun [3 ]
Wang, Jianhui [3 ]
Constantinescu, Emil M. [4 ]
机构
[1] Univ Porto, INESC TEC INESC Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, FEUP Fac Engn, P-4200465 Oporto, Portugal
[3] Argonne Natl Lab, CEEESA, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
Decision-making; density estimation; kernel; time-adaptive; uncertainty; wind power forecasting; PROBABILISTIC FORECASTS;
D O I
10.1109/TSTE.2012.2200302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness, and skill score.
引用
收藏
页码:660 / 669
页数:10
相关论文
共 30 条
[1]  
AGOSTINELLI C., R PACKAGE CIRCULAR C
[2]   'Good' or 'bad' wind power forecasts: a relative concept [J].
Bessa, R. J. ;
Miranda, V. ;
Botterud, A. ;
Wang, J. .
WIND ENERGY, 2011, 14 (05) :625-636
[3]  
Bessa R. J., 2011, P 17 PSCC C STOCKH S
[4]  
Bessa R. J., 2011, P IEEE POWERTECH C N
[5]   Entropy and Correntropy Against Minimum Square Error in Offline and Online Three-Day Ahead Wind Power Forecasting [J].
Bessa, Ricardo J. ;
Miranda, Vladimiro ;
Gama, Joao .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (04) :1657-1666
[6]  
Botterud A., 2011, P IEEE PES TRONDH PO
[7]   Wind Power Trading Under Uncertainty in LMP Markets [J].
Botterud, Audun ;
Zhou, Zhi ;
Wang, Jianhui ;
Bessa, Ricardo J. ;
Keko, Hrvoje ;
Sumaili, Jean ;
Miranda, Vladimiro .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (02) :894-903
[8]   Probabilistic wind power forecasts using local quantile regression [J].
Bremnes, JB .
WIND ENERGY, 2004, 7 (01) :47-54
[9]   Probability density function estimation using gamma kernels [J].
Chen, SX .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (03) :471-480
[10]   Beta kernel estimators for density functions [J].
Chen, SX .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (02) :131-145