Probability density function estimation using gamma kernels

被引:239
作者
Chen, SX [1 ]
机构
[1] La Trobe Univ, Dept Stat Sci, Bundoora, Vic 3083, Australia
关键词
boundary bias; gamma kernels; local linear estimators; variable kernels;
D O I
10.1023/A:1004165218295
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimating density functions which have support on [0, infinity) using some gamma probability densities as kernels to replace the fixed and symmetric kernel used in the standard kernel density estimator. The gamma kernels are nonnegative and have naturally varying shape. The gamma kernel estimators are free of boundary bias, non-negative and achieve the optimal rate of convergence for the mean integrated squared error. The variance of the gamma kernel estimators at a distance a: away from the origin is O(n(-4/5)x(-1/2)) indicating a smaller variance as x increases. Finite sample comparisons with other boundary bias free kernel estimators are made via simulation to evaluate the performance of the gamma kernel estimators.
引用
收藏
页码:471 / 480
页数:10
相关论文
共 18 条
[1]   Beta-Bernstein smoothing for regression curves with compact support [J].
Brown, BM ;
Chen, SX .
SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (01) :47-59
[2]   Beta kernel estimators for density functions [J].
Chen, SX .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (02) :131-145
[3]  
Chen SX, 2000, STAT SINICA, V10, P73
[4]  
Cheng MY, 1997, ANN STAT, V25, P1691
[5]  
Cowling A, 1996, J ROY STAT SOC B, V58, P551
[6]  
HALL P, 1991, J AM STAT ASSOC, V86, P665
[7]  
Jones MC, 1996, STAT SINICA, V6, P1005
[8]   SIMPLE BOUNDARY CORRECTION FOR KERNEL DENSITY-ESTIMATION [J].
JONES, MC .
STATISTICS AND COMPUTING, 1993, 3 (03) :135-146
[9]   SMOOTH ESTIMATORS OF DISTRIBUTION AND DENSITY-FUNCTIONS [J].
LEJEUNE, M ;
SARDA, P .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (04) :457-471
[10]  
MARRON JS, 1994, J ROY STAT SOC B, V56, P653