Probability density function estimation using gamma kernels

被引:239
作者
Chen, SX [1 ]
机构
[1] La Trobe Univ, Dept Stat Sci, Bundoora, Vic 3083, Australia
关键词
boundary bias; gamma kernels; local linear estimators; variable kernels;
D O I
10.1023/A:1004165218295
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimating density functions which have support on [0, infinity) using some gamma probability densities as kernels to replace the fixed and symmetric kernel used in the standard kernel density estimator. The gamma kernels are nonnegative and have naturally varying shape. The gamma kernel estimators are free of boundary bias, non-negative and achieve the optimal rate of convergence for the mean integrated squared error. The variance of the gamma kernel estimators at a distance a: away from the origin is O(n(-4/5)x(-1/2)) indicating a smaller variance as x increases. Finite sample comparisons with other boundary bias free kernel estimators are made via simulation to evaluate the performance of the gamma kernel estimators.
引用
收藏
页码:471 / 480
页数:10
相关论文
共 18 条
[11]  
MULLER HG, 1991, J AM STAT ASSOC, V86, P356, DOI 10.2307/2290573
[12]  
MULLER HG, 1993, SCAND J STAT, V20, P313
[13]   HAZARD RATE ESTIMATION UNDER RANDOM CENSORING WITH VARYING KERNELS AND BANDWIDTHS [J].
MULLER, HG ;
WANG, JL .
BIOMETRICS, 1994, 50 (01) :61-76
[14]   SMOOTH OPTIMUM KERNEL ESTIMATORS NEAR END-POINTS [J].
MULLER, HG .
BIOMETRIKA, 1991, 78 (03) :521-530
[15]  
Press W.H., 1987, Numerical Recipes: The Art of Scientific Computing
[17]  
Silverman BW, 1986, DENSITY ESTIMATION
[18]  
Wand MP., 1994, Kernel Smoothing