NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump

被引:169
作者
Elshorst, B
Hennig, M
Försterling, H
Diener, A
Maurer, M
Schulte, P
Schwalbe, H
Griesinger, C
Krebs, J
Schmid, H
Vorherr, T
Carafoli, E
机构
[1] Univ Frankfurt, Inst Organ Chem, D-60439 Frankfurt, Germany
[2] ETH Zurich, Inst Biochem, CH-8092 Zurich, Switzerland
关键词
D O I
10.1021/bi9908235
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The three-dimensional structure of the complex between calmodulin (CaM) and a peptide corresponding to the N-terminal portion of the CaM-binding domain of the plasma membrane calcium pump, the peptide C20W, has been solved by heteronuclear three-dimensional nuclear magnetic resonance (NMR) spectroscopy. The structure calculation is based on a total of 1808 intramolecular NOEs and 49 intermolecular NOEs between the peptide C20W and calmodulin from heteronuclear-filtered NOESY spectra and a half-filtered experiment, respectively. Chemical shift differences between free Ca2+-saturated CaM and its complex with C20W as well as the structure calculation reveal that C20W binds solely to the C-terminal half of CaM. In addition, comparison of the methyl resonances of the nine assigned methionine residues of free Ca2+-saturated CaM with those of the CaM/C20W complex revealed a significant difference between the N-terminal and the C-terminal domain; i.e., resonances in the N-terminal domain of the complex were much more similar to those reported for free CaM in contrast to those in the C-terminal half which were significantly different not only from the resonances of free CaM but also from those reported for the CaM/M13 complex. As a consequence, the global structure of the CaM/C20W complex is unusual, i.e., different from other peptide calmodulin complexes, since we find no indication for a collapsed structure. The fine modulation in the peptide protein interface shows a number of differences to the CaM/M13 complex studied by Ikura et al. [Ikura, M,, Clore, G. M., Gronenborn, A. M., Zhu. G., Klee, C, B., and Bar, A. (1992) Science 256, 632-638]. The unusual binding mode to only the C-terminal half of CaM is in agreement with the biochemical observation that the calcium pump can be activated by the C-terminal half of CaM alone [Guerini, D., Krebs, J., and Carafoli, E. (1984) J, Biol. Chem. 259, 15172-15177].
引用
收藏
页码:12320 / 12332
页数:13
相关论文
共 82 条
[1]  
[Anonymous], [No title captured]
[2]   3-DIMENSIONAL STRUCTURE OF CALMODULIN [J].
BABU, YS ;
SACK, JS ;
GREENHOUGH, TJ ;
BUGG, CE ;
MEANS, AR ;
COOK, WJ .
NATURE, 1985, 315 (6014) :37-40
[3]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[4]   Specificity and symmetry in the interaction of calmodulin domains with the skeletal muscle myosin light chain kinase target sequence [J].
Barth, A ;
Martin, SR ;
Bayley, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (04) :2174-2183
[5]   METHODOLOGICAL ADVANCES IN PROTEIN NMR [J].
BAX, A ;
GRZESIEK, S .
ACCOUNTS OF CHEMICAL RESEARCH, 1993, 26 (04) :131-138
[6]   RESONANCE ASSIGNMENT OF METHIONINE METHYL-GROUPS AND CHI(3) ANGULAR INFORMATION FROM LONG-RANGE PROTON-CARBON AND CARBON-CARBON J-CORRELATION IN A CALMODULIN PEPTIDE COMPLEX [J].
BAX, A ;
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW .
JOURNAL OF BIOMOLECULAR NMR, 1994, 4 (06) :787-797
[7]   Temperature dependence of H-1 chemical shifts in proteins [J].
Baxter, NJ ;
Williamson, MP .
JOURNAL OF BIOMOLECULAR NMR, 1997, 9 (04) :359-369
[8]   INFLUENCE OF CROSS-CORRELATION BETWEEN DIPOLAR AND ANISOTROPIC CHEMICAL-SHIFT RELAXATION MECHANISMS UPON LONGITUDINAL RELAXATION RATES OF N-15 IN MACROMOLECULES [J].
BOYD, J ;
HOMMEL, U ;
CAMPBELL, ID .
CHEMICAL PHYSICS LETTERS, 1990, 175 (05) :477-482
[9]   BIOGENESIS - PLASMA-MEMBRANE CALCIUM-ATPASE - 15 YEARS OF WORK ON THE PURIFIED ENZYME [J].
CARAFOLI, E .
FASEB JOURNAL, 1994, 8 (13) :993-1002
[10]  
Carlomagno T, 1996, J BIOMOL NMR, V8, P161, DOI 10.1007/BF00211162