Experimental investigation of biomass gasification in a fluidized bed reactor

被引:118
作者
Chen Hanping [1 ]
Li Bin [1 ]
Yang Haiping [1 ]
Yang Guolai [1 ]
Zhang Shihong [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
关键词
D O I
10.1021/ef800180e
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper aims to catch the influence of various operating conditions and catalyst addition on the property of gas product and tar evolution. The gasification of three local biomass samples (sawdust, peanut shell, and wheat straw) was performed using a fluidized bed gasification reactor, and the gas product and liquid tar were analyzed with gas chromatography (GC). First, the influence of biomass property, gasification temperature, and air equivalence ratio was investigated. The biomass feeding rate was set at similar to 2.37 kg/h; the furnace temperature variant was between 750 and 850 degrees C; and the equivalence ratio (ER) was 0.15-0.35. It can be observed that a lower heating value (LHV) of gas product from sawdust is higher than peanut shell and straw, while the tar content is also much higher than the other two samples, which might be attributed to the high volatile content. At 800 degrees C, with the increase of ER, the gas yield increased rapidly from 1.14 to 1.93 m(3)/kg, while the LHV decreased from 7.09 to 3.26 MJ/m(3). Meanwhile, the variation of ER also showed a great effect on tar species. With the increase in temperature, combustible gas content, gas yield, and LHV all increased significantly, while the tar content decreased sharply from 13.24 to 6.53 g/m(3), which indicated that high temperature was favorable for biomass gasification. Then, three additives (dolomite, magnesite, and olivine) were introduced into the gasification process as catalyst for tar cracking. It is great for the upgrading of gas product quality, and tar removal efficiencies are all above 50%. It is significant for the development of biomass gasification technology.
引用
收藏
页码:3493 / 3498
页数:6
相关论文
共 19 条
[1]   Prediction of the working parameters of a wood waste gasifier through an equilibrium model [J].
Altafini, CR ;
Wander, PR ;
Barreto, RM .
ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (17) :2763-2777
[2]   Catalytic pyrogasification of biomass. Evaluation of modified nickel catalysts [J].
Arauzo, J ;
Radlein, D ;
Piskorz, J ;
Scott, DS .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (01) :67-75
[3]   Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects [J].
Chen, G ;
Andries, J ;
Luo, Z ;
Spliethoff, H .
ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (11) :1875-1884
[4]   Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: Which is better? [J].
Corella, J ;
Toledo, JM ;
Padilla, R .
ENERGY & FUELS, 2004, 18 (03) :713-720
[5]   The characteristics of inorganic elements in ashes from a 1 MW CFB biomass gasification power generation plant [J].
Cuiping Liao ;
Chuangzhi Wu ;
Yongjie Yan .
FUEL PROCESSING TECHNOLOGY, 2007, 88 (02) :149-156
[6]   Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: Life and usefulness [J].
Delgado, J ;
Aznar, MP ;
Corella, J .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1996, 35 (10) :3637-3643
[7]   Catalytic decomposition of biomass tars: use of dolomite and untreated olivine [J].
Devi, L ;
Ptasinski, KJ ;
Janssen, FJJG ;
van Paasen, SVB ;
Bergman, PCA ;
Kiel, JHA .
RENEWABLE ENERGY, 2005, 30 (04) :565-587
[8]   The study of reactions influencing the biomass steam gasification process [J].
Franco, C ;
Pinto, F ;
Gulyurtlu, I ;
Cabrita, I .
FUEL, 2003, 82 (07) :835-842
[9]   Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution [J].
Gil, J ;
Corella, J ;
Aznar, MP ;
Caballero, MA .
BIOMASS & BIOENERGY, 1999, 17 (05) :389-403
[10]   Catalytic effect of biomass ash on CO, CH4 and HCN oxidation under fluidised bed combustor conditions [J].
Löffler, G ;
Wargadalam, VJ ;
Winter, F .
FUEL, 2002, 81 (06) :711-717