Lung injury from intratracheal and inhalation exposures to residual oil fly ash in a rat model of monocrotaline-induced pulmonary hypertension

被引:35
作者
Kodavanti, UP
Jackson, MC
Ledbetter, AD
Richards, JR
Gardner, SY
Watkinson, WP
Campen, MJ
Costa, DL
机构
[1] US EPA, Natl Hlth & Environm Effects Res Lab, Expt Toxicol Div, Pulm Toxicol Branch, Res Triangle Pk, NC 27711 USA
[2] N Carolina State Univ, Coll Vet Med, Raleigh, NC USA
[3] N Carolina State Univ, Sch Publ Hlth, Raleigh, NC USA
来源
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES | 1999年 / 57卷 / 08期
关键词
D O I
10.1080/009841099157502
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A rat model of monocrotaline (MCT)-induced pulmonary injury/hypertension has been recently used in particulate matter (PM) health effects studies, however, results have been equivocal. Neither the mechanism by which mortality occurs in this model nor the variation in response due to differences in PM exposure protocols (i.e., a bolus dose delivered intratracheally versus a similar cumulative dose inhaled over three days) have been fully investigated. Sprague Dawley rats (SD, 60 d old; 250-300 g) were injected with either saline (healthy) or MCT, 60 mg/kg, i.p. (to induce pulmonary injury/hypertension). Ten days later they were exposed to residual oil fly ash (ROFA), either intratracheally (IT; saline, 0.83 or 3.33 mg/kg) or by nose-only inhalation (15 mg/m(3) x 6 h/d x 3 d). Lung histology, pulmonary cytokine gene expression (0 and 18 h post-inhalation), and bronchoalveolar lavage fluid (BALF) markers of injury were analyzed (24 and 96 h post-IT; or 18 h post-inhalation). Data comparisons examined three primary aspects, 1) ROFA IT versus inhalation effects in healthy rats; 2) pulmonary injury caused by MCT; and 3) exacerbation of ROFA effects in MCT rats. In the first aspect, pulmonary histological lesions following ROFA inhalation in healthy rats were characterized by edema, inflammatory cell infiltration, and thickening of alveolar walls. Increases in BALF markers of lung injury and inflammation were apparent in ROFA-IT or nose-only exposed healthy rats. Increased IL-6, and MIP-2 expression were also apparent in healthy rats following ROFA inhalation. In regards to the second aspect, MCT rats exposed to saline or air showed perivascular inflammatory cell infiltrates, increased presence of large macrophages, and alveolar thickening. Consistently, BALF protein, and inflammatory markers (macrophage and neutrophil counts) were elevated indicating pulmonary injury. In regards to the third aspect, 58% of MCT rats exposed to ROFA IT died within 96 h regardless of the dose. No mortality was observed using the inhalation protocol. ROFA inhalation in MCT rats caused exacerbation of lung lesions such as increased edema, alveolar wall thickening, and inflammatory cell infiltration. This exacerbation was also evident in terms of additive or more than additive increases in BALF neutrophils, macrophages and eosinophils. IL-6 but not MIP-2 expression was more than additive in MCT rats, and persisted over 18 h following ROFA. IL-10 and cellular fibronectin expression was only increased in MCT rats exposed to ROFA. In summary, only the bolus IT ROFA caused mortality in the rat model of lung injury/hypertension. Exacerbation of histological lesions and cytokine mRNA expression were most reflective of increased ROFA susceptibility in this model.
引用
收藏
页码:543 / 563
页数:21
相关论文
共 36 条
[1]  
[Anonymous], RES PRIOR AIRB PART
[2]  
COSTA DL, 1986, LAB ANIM SCI, V36, P256
[3]   Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models [J].
Costa, DL ;
Dreher, KL .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1997, 105 :1053-1060
[4]   AN ASSOCIATION BETWEEN AIR-POLLUTION AND MORTALITY IN 6 UNITED-STATES CITIES [J].
DOCKERY, DW ;
POPE, CA ;
XU, XP ;
SPENGLER, JD ;
WARE, JH ;
FAY, ME ;
FERRIS, BG ;
SPEIZER, FE .
NEW ENGLAND JOURNAL OF MEDICINE, 1993, 329 (24) :1753-1759
[5]   Soluble transition metals mediate residual oil fly ash induced acute lung injury [J].
Dreher, KL ;
Jaskot, RH ;
Lehmann, JR ;
Richards, JH ;
McGee, JK ;
Ghio, AJ ;
Costa, DL .
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH, 1997, 50 (03) :285-305
[6]   MACROPHAGE INFLAMMATORY PROTEIN-1 AND PROTEIN-2 - EXPRESSION BY RAT ALVEOLAR MACROPHAGES, FIBROBLASTS, AND EPITHELIAL-CELLS AND IN RAT LUNG AFTER MINERAL DUST EXPOSURE [J].
DRISCOLL, KE ;
HASSENBEIN, DG ;
CARTER, J ;
POYNTER, J ;
ASQUITH, TN ;
GRANT, RA ;
WHITTEN, J ;
PURDON, MP ;
TAKIGIKU, R .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 1993, 8 (03) :311-318
[7]  
Ghio AJ, 1996, J TOXICOL ENV HEALTH, V49, P11
[8]  
GODLESKI JJ, 1996, P 2 C PART AIR POLL, P4136
[9]   SYNTHESIS AND CHARACTERIZATION OF RAT INTERLEUKIN-10 (IL-10) CDNA CLONES FROM THE RNA OF CULTURED OX8- OX22- THORACIC-DUCT T-CELLS [J].
GOODMAN, RE ;
OBLAK, J ;
BELL, RG .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1992, 189 (01) :1-7
[10]   Pulmonary and cardiovascular effects of acute exposure to concentrated ambient particulate matter in rats [J].
Gordon, T ;
Nadziejko, C ;
Schlesinger, R ;
Chen, LC .
TOXICOLOGY LETTERS, 1998, 96-7 :285-288