Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: Sample preparation, parameters optimization and analysis

被引:54
作者
Chen Yong-jun [1 ]
Hjelen, Jarle [1 ]
Roven, Hans J. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, NO-7491 Trondheim, Norway
关键词
electron backscatter diffraction (EBSD); sample preparation; parameters optimization; step size; severe plastic deformation (SPD); MICROSTRUCTURE EVOLUTION; STRAIN; MG; TEXTURE; ALLOYS;
D O I
10.1016/S1003-6326(11)61390-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (similar to 0.5 degrees). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.
引用
收藏
页码:1801 / 1809
页数:9
相关论文
共 25 条
[1]   Development of the "brass" texture component during the hot deformation of Al-6Cu-0.4Zr [J].
Bate, PS ;
Huang, Y ;
Humphreys, FJ .
ACTA MATERIALIA, 2004, 52 (14) :4281-4289
[2]   Microtexture, grain boundary character distribution and secondary working embrittlement of high strength IF steels [J].
Cao, SQ ;
Zhang, JX ;
Wu, JS ;
Wang, L ;
Chen, JG .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 392 (1-2) :203-208
[3]   Optimization of EBSD parameters for ultra-fast characterization [J].
Chen, Y. ;
Hjelen, J. ;
Gireesh, S. S. ;
Roven, H. J. .
JOURNAL OF MICROSCOPY, 2012, 245 (02) :111-118
[4]   Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression [J].
Chen, Y. J. ;
Wang, Q. D. ;
Roven, H. J. ;
Karlsen, M. ;
Yu, Y. D. ;
Liu, M. P. ;
Hjelen, J. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 462 (1-2) :192-200
[5]   Microstructure and mechanical properties of Al-xMg alloys processed by room temperature ECAP [J].
Chen, Y. J. ;
Chai, Y. C. ;
Roven, H. J. ;
Gireesh, S. S. ;
Yu, Y. D. ;
Hjelen, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 545 :139-147
[6]   Quantitative study of grain refinement in Al-Mg alloy processed by equal channel angular pressing at cryogenic temperature [J].
Chen, Y. J. ;
Roven, H. J. ;
Gireesh, S. S. ;
Skaret, P. C. ;
Hjelen, J. .
MATERIALS LETTERS, 2011, 65 (23-24) :3472-3475
[7]   Quantitative analysis of grain refinement in titanium during equal channel angular pressing [J].
Chen, Y. J. ;
Li, Y. J. ;
Walmsley, J. C. ;
Dumoulin, S. ;
Gireesh, S. S. ;
Armada, S. ;
Skaret, P. C. ;
Roven, H. J. .
SCRIPTA MATERIALIA, 2011, 64 (09) :904-907
[8]   Microstructure evolution of commercial pure titanium during equal channel angular pressing [J].
Chen, Y. J. ;
Li, Y. J. ;
Walmsley, J. C. ;
Dumoulin, S. ;
Skaret, P. C. ;
Roven, H. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (03) :789-796
[9]  
CHEN YJ, MAT SCI ENG A UNPUB
[10]   Evaluation of stored energy in cold-rolled steels from EBSD data [J].
Choi, SH ;
Jin, YS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 371 (1-2) :149-159