The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3

被引:172
作者
Cadenas, S
Echtay, KS
Harper, JA
Jekabsons, MB
Buckingham, JA
Grau, E
Abuin, A
Chapman, H
Clapham, JC
Brand, MD
机构
[1] MRC, Dunn Human Nutr Unit, Cambridge CB2 2XY, England
[2] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England
[3] GlaxoSmithKline, Dept Vasc Biol, Harlow CM19 5AW, Essex, England
[4] GlaxoSmithKline, Dept COmparat Genom, Harlow CM19 5AW, Essex, England
关键词
D O I
10.1074/jbc.M109736200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability of native uncoupling protein-3 (UCP3) to uncouple mitochondrial oxidative phosphorylation is controversial. We measured the expression level of UCP3 and the proton conductance of skeletal muscle mitochondria isolated from transgenic mice overexpressing human UCP3 (UCP3-tg) and from UCP3 knockout (UCP3-KO) mice. The concentration of UCP3 in UCP3-tg mitochondria was similar to3 mug/mg protein, similar to20-fold higher than the wild type value. UCP3-tg mitochondria had increased nonphosphorylating respiration rates, decreased respiratory control, and similar to4-fold increased proton conductance compared with the wild type. However, this increased uncoupling in UCP3-tg mitochondria was not caused by native function of UCP3 because it was not proportional to the increase in UCP3 concentration and was neither activated by superoxide nor inhibited by GDP. UCP3 was undetectable in mitochondria from UCP3-KO mice. Nevertheless, UCP3-KO mitochondria had unchanged respiration rates, respiratory control ratios, and proton conductance compared with the wild type under a variety of assay conditions. We conclude that uncoupling in UCP3-tg mice is an artifact of transgenic expression, and that UCP3 does not catalyze the basal proton conductance of skeletal muscle mitochondria in the absence of activators such as superoxide.
引用
收藏
页码:2773 / 2778
页数:6
相关论文
共 58 条
[1]   FUNCTIONAL EXPRESSION OF THE RAT BROWN ADIPOSE-TISSUE UNCOUPLING PROTEIN IN SACCHAROMYCES-CEREVISIAE [J].
BATHGATE, B ;
FREEBAIRN, EM ;
GREENLAND, AJ ;
REID, GA .
MOLECULAR MICROBIOLOGY, 1992, 6 (03) :363-370
[2]   ISOLATION OF SKELETAL-MUSCLE MITOCHONDRIA FROM HAMSTERS USING AN IONIC MEDIUM CONTAINING ETHYLENEDIARNINETETRAACETIC ACID AND NAGARSE [J].
BHATTACHARYA, SK ;
THAKAR, JH ;
JOHNSON, PL ;
SHANKLIN, DR .
ANALYTICAL BIOCHEMISTRY, 1991, 192 (02) :344-349
[3]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[4]   Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature [J].
Boss, O ;
Samec, S ;
Kühne, F ;
Bijlenga, P ;
Assimacopoulos-Jeannet, F ;
Seydoux, J ;
Giacobino, JP ;
Muzzin, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :5-8
[5]   UCP1, UCP2 and UCP3: Are they true uncouplers of respiration? [J].
Bouillaud, F .
INTERNATIONAL JOURNAL OF OBESITY, 1999, 23 (Suppl 6) :S19-S23
[6]   THE CAUSES AND FUNCTIONS OF MITOCHONDRIAL PROTON LEAK [J].
BRAND, MD ;
CHIEN, LF ;
AINSCOW, EK ;
ROLFE, DFS ;
PORTER, RK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1187 (02) :132-139
[7]   The significance and mechanism of mitochondrial proton conductance [J].
Brand, MD ;
Brindle, KM ;
Buckingham, JA ;
Harper, JA ;
Rolfe, DFS ;
Stuart, JA .
INTERNATIONAL JOURNAL OF OBESITY, 1999, 23 (Suppl 6) :S4-S11
[8]   THE PROTON LEAK ACROSS THE MITOCHONDRIAL INNER MEMBRANE [J].
BRAND, MD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1018 (2-3) :128-133
[9]  
BRAND MD, 1995, BIOENERGETICS PRACTI, P39
[10]   ON THE NATURE OF THE MITOCHONDRIAL PROTON LEAK [J].
BROWN, GC ;
BRAND, MD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1059 (01) :55-62