Schwoebel-Ehrlich barrier: from two to three dimensions
被引:103
作者:
Liu, SJ
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
Liu, SJ
[1
]
Huang, HC
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
Huang, HC
[1
]
Woo, CH
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
Woo, CH
[1
]
机构:
[1] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
The Schwoebel-Ehrlich barrier-the additional barrier for an adatom to diffuse down a surface step-dictates the growth modes of thin films. The conventional concept of this barrier is two dimensional (2D), with the surface step being one monolayer. We propose the concept of a three-dimensional (3D) Schwoebel-Ehrlich barrier, and identify the 2D to 3D transition, taking aluminum as a prototype and using the molecular statics method. Our results show that: (1) substantial differences exist between the 2D and 3D barriers; (2) the transition completes in four monolayers; and (3) there is a major disparity in the 3D barriers between two facets; further, alteration of this disparity using surfactants can lead to the dominance of surface facet against thermodynamics. (C) 2002 American Institute of Physics.