Wafer bonding technology and its applications in optoelectronic devices and materials

被引:73
作者
Zhu, ZH
Ejeckam, FE
Qian, Y
Zhang, JZ
Zhang, ZJ
Christenson, GL
Lo, YH
机构
[1] School of Electrical Engineeing, Cornell University, Ithaca
[2] Department of Physics, Nanjing University
[3] E. China Institute of Semiconductors, Chinese Academy of Sciences, Nanjing
[4] Dept. of Info. and Electronics Eng., Zhejiang University
[5] Dept. of Elec. Eng. and Comp. Sci., University of California, Berkeley, CA
[6] School of Electrical Engineering, Cornell University, Ithaca, NY
[7] CIE, COS (Chinese Optical Society)
[8] University of Houston, Houston, TX
[9] Rice University, Houston, TX
[10] Cornell University, Ithaca, NY
[11] Zhejiang University, Hangzhou
[12] Institute of Semiconductors, Chinese Academy of Sciences, Beijing
[13] Institute of Semiconductors, Chinese Academy of Sciences
[14] Univ. of Sci. and Technol. of China, Hefei
[15] Brown University, Providence, RI
[16] University of California, Berkeley, CA
[17] Sch. of Elec. Engineering, Cornell, Ithaca, NY
基金
美国国家科学基金会;
关键词
compliant substrates; heterostructure; micromachining; optoelectronic integration; vertical-cavity surface-emitting lasers; water bonding;
D O I
10.1109/2944.640646
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Direct wafer bonding process has found broad applications in many critical areas including both commercial and state-of-the-art photonic devices and more recently, formation of semiconductor compliant substrates. Using the wafer bonding technology, we have demonstrated 1.3-mu m vertical-cavity surface-emitting lasers (VCSEL's) with a 1-mA continuous-wave (CW) threshold current and 0.83-mA pulsed threshold current. Superior device performance has also been achieved,vith photodetectors and micromachined tunable devices. Applying the wafer bonding process in a novel way, we have fabricated compliant universal substrates on which largely mismatched (e.g., 15% mismatch) heteroepitaxial layers can be grown defect free.
引用
收藏
页码:927 / 936
页数:10
相关论文
共 45 条
[1]   ROOM-TEMPERATURE CONTINUOUS-WAVE OPERATION OF 1.54-MU-UM VERTICAL-CAVITY LASERS [J].
BABIC, DI ;
STREUBLE, K ;
MIRIN, RP ;
MARGALIT, NM ;
BOWERS, JE ;
HU, EL ;
MARS, DE ;
YANG, L ;
CAREY, K .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1995, 7 (11) :1225-1227
[2]   Single-mode, 1 Gb/s operation of double-fused vertical-cavity lasers at 1.54 mu m [J].
Blixt, P ;
Babic, DI ;
Streubel, K ;
Margalit, NM ;
Reynolds, TE ;
Bowers, JE .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (05) :700-702
[3]  
CHRISTENSON GL, 1996, P IEEE LEOS 96 C, P294
[4]   Lattice engineered compliant substrate for defect-free heteroepitaxial growth [J].
Ejeckam, FE ;
Lo, YH ;
Subramanian, S ;
Hou, HQ ;
Hammons, BE .
APPLIED PHYSICS LETTERS, 1997, 70 (13) :1685-1687
[5]   High-performance InGaAs photodetectors on Si and GaAs substrates [J].
Ejeckam, FE ;
Chua, CL ;
Zhu, ZH ;
Lo, YH ;
Hong, M ;
Bhat, R .
APPLIED PHYSICS LETTERS, 1995, 67 (26) :3936-3938
[6]  
EJECKAM FE, IN PRESS APPL PHYS L
[7]  
EJECKAM FE, 1996, IEEE CLEO 96 C, P492
[8]  
EJECKAM FE, 1997, 9 INT C IND PHOSPH R
[9]   DISLOCATION REDUCTION IN EPITAXIAL GAAS ON SI (100) [J].
FISCHER, R ;
NEUMAN, D ;
ZABEL, H ;
MORKOC, H ;
CHOI, C ;
OTSUKA, N .
APPLIED PHYSICS LETTERS, 1986, 48 (18) :1223-1225
[10]   Critical thickness condition for a strained compliant substrate/epitaxial film system [J].
Freund, LB ;
Nix, WD .
APPLIED PHYSICS LETTERS, 1996, 69 (02) :173-175