Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites

被引:47
作者
Bafekrpour, Ehsan [1 ]
Simon, George P. [2 ]
Habsuda, Jana [2 ]
Naebe, Minoo [1 ]
Yang, Chunhui [3 ]
Fox, Bronwyn [1 ]
机构
[1] Deakin Univ, Ctr Mat & Fibre Innovat, Geelong, Vic 3220, Australia
[2] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia
[3] Deakin Univ, Sch Engn, Geelong, Vic 3220, Australia
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2012年 / 545卷
关键词
Functionally graded polymeric nanocomposites; Phenolic resin; Graphite; Thermomechanical/electrical/thermal properties; Creep; POLYMER COMPOSITES; ELECTRICAL-CONDUCTIVITY; CARBON/EPOXY COMPOSITES; MECHANICAL-PROPERTIES; EPOXY; GRADIENT; NANOTUBES; GRAPHITE; BEHAVIOR;
D O I
10.1016/j.msea.2012.02.097
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Stepwise functionally graded synthetic graphite/phenolic nanocomposites (FGNs) were fabricated using combined powder stacking and compression molding techniques. The process allowed the fabrication of FGNs with four different microstructure gradient patterns of the same geometry and graphite content, as well as non-graded nanocomposites (NGNs). The FGN with the highest graphite content layer on the top and bottom surfaces and the lowest in the center, showed the highest improvement of 97% in thermo-mechanical properties and the best creep recovery of 34.7% among all FGNs and NGN. Introducing graphite by 20 wt% increased thermal conductivity of phenolic from 0.35 to 0.88 W/(m degrees C) and decreased its electrical resistivity to 20.8 Omega/cm. It was found that the electrical and thermal properties of nanocomposites could be manipulated by changing the gradient patterns. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 46 条
[1]   Thermal behavior of poly(ethylene-co-propylene) containing carbon nanofibers [J].
Adhikari, A. R. ;
Georgiev, G. ;
Sigdel, K. ;
Iannacchione, G. S. ;
Lozano, K. ;
Chipara, M. .
POLYMER ENGINEERING AND SCIENCE, 2012, 52 (02) :408-413
[2]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[3]  
2-6
[4]   Mechanical and electrical properties of a MWNT/epoxy composite [J].
Allaoui, A ;
Bai, S ;
Cheng, HM ;
Bai, JB .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (15) :1993-1998
[5]   Physical aging of a tetrafunctional/phenol novolac epoxy mixture cured with diamine -: DSC and DMA measurements [J].
Barral, L ;
Cano, J ;
López, J ;
López-Bueno, I ;
Nogueira, P ;
Abad, MJ ;
Ramirez, C .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2000, 60 (02) :391-399
[6]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[7]   Analytical modelling of thermal residual stresses in exponential functionally graded material system [J].
Bouchafa, Ali ;
Benzair, Abdelnour ;
Tounsi, Abdeloulahed ;
Draiche, Kada ;
Mechab, Ismail ;
Bedia, El Abbas Adda .
MATERIALS & DESIGN, 2010, 31 (01) :560-563
[8]   Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties [J].
Chen, Zhen-Kun ;
Yang, Jiao-Ping ;
Ni, Qing-Qing ;
Fu, Shao-Yun ;
Huang, Yong-Gang .
POLYMER, 2009, 50 (19) :4753-4759
[9]   Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes [J].
dos Santos, Marcos N. ;
Opelt, Carlos V. ;
Lafratta, Fernando H. ;
Lepienski, Carlos M. ;
Pezzin, Sergio H. ;
Coelho, Luiz A. F. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (13-14) :4318-4324
[10]   Multiwalled carbon nanotubes as a unique agent to fabricate nanostructure-controlled functionally graded alumina ceramics [J].
Estili, Mehdi ;
Takagi, Kenta ;
Kawasaki, Akira .
SCRIPTA MATERIALIA, 2008, 59 (07) :703-705