Thermal behavior of poly(ethylene-co-propylene) containing carbon nanofibers

被引:2
作者
Adhikari, A. R. [1 ]
Georgiev, G. [1 ]
Sigdel, K. [2 ]
Iannacchione, G. S. [2 ]
Lozano, K. [3 ]
Chipara, M. [4 ]
机构
[1] Assumption Coll, Dept Nat Sci, Worcester, MA 01609 USA
[2] Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA
[3] Univ Texas Pan Amer, Dept Mech Engn, Edinburg, TX 78541 USA
[4] Univ Texas Pan Amer, Dept Phys & Geol, Edinburg, TX 78541 USA
基金
美国国家科学基金会;
关键词
X-RAY-SCATTERING; POLYMER NANOCOMPOSITES; IN-SITU; CRYSTALLIZATION; NANOTUBE; BLENDS; POLYPROPYLENE; FABRICATION; ELASTOMER; KINETICS;
D O I
10.1002/pen.22097
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The effect of carbon nanofiber on the thermal behavior of poly(ethylene-co-propylene) (PEP) as revealed by differential scanning calorimetry and thermogravimetric analysis is reported. Analysis showed faster crystallization of PEP at higher temperature upon cooling with the increase of carbon nanofiber (CNF) content. The crystallization behavior changed to a single narrow crystallization peak as compared with the broad double crystallization peak of the neat polymer. This demonstrates the nucleation ability of CNF to induce crystals with more uniform distribution. The modified-Avrami approach was used to study the crystallization behavior. We found that the crystallization rate constant increased with addition of CNFs. The dimensionality of crystal growth was found not to depend significantly on the content of CNF. Thermal degradation in air was monitored using thermogravimetric analysis and observed that the incorporation of nanofiber greater than 2.4 vol% improves thermal stability of PEP. All these results indicate that CNFs can significantly help polymer processing and increase thermal stability of polymers. POLYM. ENG. SCI., 2012. (C) 2011 Society of Plastics Engineers
引用
收藏
页码:408 / 413
页数:6
相关论文
共 36 条
[1]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[2]   Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers [J].
Bokobza, Liliane ;
Rahmani, Mostafa ;
Belin, Colette ;
Bruneel, Jean-Luc ;
El Bounia, Nour-Eddine .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2008, 46 (18) :1939-1951
[3]  
Chase M.W., 1998, J. of Physical and Chemical Reference Data, DOI 10.18434/T42S31
[4]   Field emission from aligned carbon nanofibers grown in situ by hot filament chemical vapor deposition [J].
Chen, CF ;
Lin, CL ;
Wang, CM .
APPLIED PHYSICS LETTERS, 2003, 82 (15) :2515-2517
[5]   Crystallization Behavior of Poly(vinylidene fluoride) Nanocomposites Containing Multiwalled Carbon Nanotubes [J].
Chen, Dan ;
Wu, Meng ;
Wang, Weizhi ;
Liu, Tianxi .
JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2010, 49 (06) :1069-1082
[6]   In-situ X-ray scattering studies of a unique toughening mechanism in surface-modified carbon nanofiber/UHMWPE nanocomposite films [J].
Chen, XM ;
Yoon, KW ;
Burger, C ;
Sics, I ;
Fang, DF ;
Hsiao, BS ;
Chu, B .
MACROMOLECULES, 2005, 38 (09) :3883-3893
[7]  
Ciesielski A., 1999, INTRO RUBBER TECHNOL
[8]   Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing [J].
Cipriano, Bani H. ;
Kota, Arun K. ;
Gershon, Alan L. ;
Laskowski, Conrad J. ;
Kashiwagi, Takashi ;
Bruck, Hugh A. ;
Raghavan, Srinivasa R. .
POLYMER, 2008, 49 (22) :4846-4851
[9]   The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials [J].
Cui, Yanbin ;
Liu, Caihong ;
Hu, Shan ;
Yu, Xun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (04) :1208-1212
[10]  
Denisha H.-J., 2008, ENERG FUEL, V22, P4139