A computational framework for boosting confidence in high-throughput protein-protein interaction datasets

被引:34
作者
Hosur, Raghavendra [1 ]
Peng, Jian [1 ,2 ]
Vinayagam, Arunachalam [3 ]
Stelzl, Ulrich [4 ]
Xu, Jinbo [2 ]
Perrimon, Norbert [3 ,5 ]
Bienkowska, Jadwiga [6 ]
Berger, Bonnie [1 ,7 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Toyota Technol Inst, Chicago, IL 60637 USA
[3] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[4] Max Planck Inst Mol Genet, Otto Warburg Lab, D-14195 Berlin, Germany
[5] Howard Hughes Med Inst, Boston, MA 02115 USA
[6] Biogen Idec Inc, Computat Biol Grp, Cambridge, MA 02142 USA
[7] MIT, Dept Math, Cambridge, MA 02139 USA
来源
GENOME BIOLOGY | 2012年 / 13卷 / 08期
关键词
INTERACTION NETWORK; SACCHAROMYCES-CEREVISIAE; MASS-SPECTROMETRY; SIMULATED EVOLUTION; STRUCTURAL BIOLOGY; INTERACTION MAP; PREDICTION; SCALE; PHOSPHORYLATION; INTERFACES;
D O I
10.1186/gb-2012-13-8-r76
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs. Coev2Net can be downloaded at http:struct2net.csail.mit.edu.
引用
收藏
页数:13
相关论文
共 98 条
[91]   Three-dimensional reconstruction of protein networks provides insight into human genetic disease [J].
Wang, Xiujuan ;
Wei, Xiaomu ;
Thijssen, Bram ;
Das, Jishnu ;
Lipkin, Steven M. ;
Yu, Haiyuan .
NATURE BIOTECHNOLOGY, 2012, 30 (02) :159-164
[92]   Challenges for the prediction of macromolecular interactions [J].
Wass, Mark N. ;
David, Alessia ;
Sternberg, Michael J. E. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2011, 21 (03) :382-390
[93]   SCOPPI: a structural classification of protein - protein interfaces [J].
Winter, Christof ;
Henschel, Andreas ;
Kim, Wan Kyu ;
Schroeder, Michael .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D310-D314
[94]   The dimeric versus monomeric status of 14-3-3ζ is controlled by phosphorylation of Ser58 at the dimer interface [J].
Woodcock, JM ;
Murphy, J ;
Stomski, FC ;
Berndt, MC ;
Lopez, AF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (38) :36323-36327
[95]  
Xu Jinbo, 2003, J Bioinform Comput Biol, V1, P95, DOI 10.1142/S0219720003000186
[96]   JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage [J].
Yoshida, K ;
Yamaguchi, T ;
Natsume, T ;
Kufe, D ;
Miki, Y .
NATURE CELL BIOLOGY, 2005, 7 (03) :278-U97
[97]   High-quality binary protein interaction map of the yeast interactome network [J].
Yu, Haiyuan ;
Braun, Pascal ;
Yildirim, Muhammed A. ;
Lemmens, Irma ;
Venkatesan, Kavitha ;
Sahalie, Julie ;
Hirozane-Kishikawa, Tomoko ;
Gebreab, Fana ;
Li, Na ;
Simonis, Nicolas ;
Hao, Tong ;
Rual, Jean-Francois ;
Dricot, Amelie ;
Vazquez, Alexei ;
Murray, Ryan R. ;
Simon, Christophe ;
Tardivo, Leah ;
Tam, Stanley ;
Svrzikapa, Nenad ;
Fan, Changyu ;
de Smet, Anne-Sophie ;
Motyl, Adriana ;
Hudson, Michael E. ;
Park, Juyong ;
Xin, Xiaofeng ;
Cusick, Michael E. ;
Moore, Troy ;
Boone, Charlie ;
Snyder, Michael ;
Roth, Frederick P. ;
Barabasi, Albert-Laszlo ;
Tavernier, Jan ;
Hill, David E. ;
Vidal, Marc .
SCIENCE, 2008, 322 (5898) :104-110
[98]   Combining multiple positive training sets to generate confidence scores for protein-protein interactions [J].
Yu, Jingkai ;
Finley, Russell L., Jr. .
BIOINFORMATICS, 2009, 25 (01) :105-111