A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

被引:16
作者
Davis, P [1 ]
机构
[1] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England
关键词
D O I
10.1088/0264-9381/23/10/023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable.
引用
收藏
页码:3607 / 3618
页数:12
相关论文
共 16 条
[1]   GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS [J].
CARTER, B .
PHYSICAL REVIEW, 1968, 174 (05) :1559-+
[2]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[3]  
Chen W, 2006, J HIGH ENERGY PHYS
[4]  
CHEN W, 2006, HEPTH0601002
[5]   Separability and Killing tensors in Kerr-Taub-NUT-de Sitter metrics in higher dimensions [J].
Chong, ZW ;
Gibbons, GW ;
Hü, L ;
Pope, CN .
PHYSICS LETTERS B, 2005, 609 (1-2) :124-132
[6]   General nonextremal rotating black holes in minimal five-dimensional gauged supergravity -: art. no. 161301 [J].
Chong, ZW ;
Cvetic, M ;
Lü, H ;
Pope, CN .
PHYSICAL REVIEW LETTERS, 2005, 95 (16)
[7]   Charged Kerr-de Sitter black holes in five dimensions [J].
Cvetic, M ;
Lü, H ;
Pope, CN .
PHYSICS LETTERS B, 2004, 598 (3-4) :273-278
[8]   Special symmetries of the charged Kerr-AdS black hole of D=5 minimal gauged supergravity [J].
Davis, P ;
Kunduri, HK ;
Lucietti, J .
PHYSICS LETTERS B, 2005, 628 (3-4) :275-280
[9]   Particle and light motion in a space-time of a five-dimensional rotating black hole [J].
Frolov, V ;
Stojkovic, D .
PHYSICAL REVIEW D, 2003, 68 (06)
[10]   The general Kerr-de Sitter metrics in all dimensions [J].
Gibbons, GW ;
Lü, H ;
Page, DN ;
Pope, CN .
JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (01) :49-73