The reductive hotspot hypothesis of mammalian aging - Membrane metabolism magnifies mutant mitochondrial mischief

被引:46
作者
de Grey, ADNJ [1 ]
机构
[1] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2002年 / 269卷 / 08期
关键词
aging; mitochondrial mutations; plasma membrane redox; extracellular superoxide; lipoproteins;
D O I
10.1046/j.1432-1033.2002.02868.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A severe challenge to the idea that mitochondrial DNA mutations play a major role in the aging process in mammals is that clear loss-of-function mutations accumulate only to very low levels (under 1% of total) in almost any tissue, even by very old age. Their accumulation is punctate: some cells become nearly devoid of wild-type mitochondrial DNA and exhibit no activity for the partly mitochondrially encoded enzyme cytochrome c oxidase. Such cells accumulate in number with aging, suggesting that they survive indefinitely, which is itself paradoxical. The reductive hotspot hypothesis suggests that these cells adjust their metabolism to use plasma membrane electron transport as a substitute for the mitochondrial electron transport chain in the reoxidation of reduced dinucleotides, and that, like mitochondrial electron transport, this process is imperfect and generates superoxide as a side-effect. This superoxide, generated on the outside of the cell, can potentially initiate classical free radical chemistry including lipid peroxidation chain reactions in circulating material such as lipoproteins. These, in turn, can be toxic to mitochondrially nonmutant cells that import them to satisfy their cholesterol requirements. Thus, the relatively few cells that have lost oxidative phosphorylation capacity may be toxic to the rest of the body. In this minireview, recent results relevant to this hypothesis are surveyed and approaches to intervening in the proposed process are discussed.
引用
收藏
页码:2003 / 2009
页数:7
相关论文
共 68 条
[1]   Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA [J].
Appleby, RD ;
Porteous, WK ;
Hughes, G ;
James, AM ;
Shannon, D ;
Wei, YH ;
Murphy, MP .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 262 (01) :108-116
[2]   The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme [J].
Bai, YD ;
Attardi, G .
EMBO JOURNAL, 1998, 17 (16) :4848-4858
[3]   MITOCHONDRIAL MUTATIONS MAY INCREASE OXIDATIVE STRESS - IMPLICATIONS FOR CARCINOGENESIS AND AGING [J].
BANDY, B ;
DAVISON, AJ .
FREE RADICAL BIOLOGY AND MEDICINE, 1990, 8 (06) :523-539
[4]   LOW MITOCHONDRIAL FREE-RADICAL PRODUCTION PER UNIT O-2 CONSUMPTION CAN EXPLAIN THE SIMULTANEOUS PRESENCE OF HIGH LONGEVITY AND HIGH AEROBIC METABOLIC-RATE IN BIRDS [J].
BARJA, G ;
CADENAS, S ;
ROJAS, C ;
PEREZCAMPO, R ;
LOPEZTORRES, M .
FREE RADICAL RESEARCH, 1994, 21 (05) :317-327
[5]   Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle [J].
Barrientos, A ;
Casademont, J ;
Rotig, A ;
Miro, O ;
UrbanoMarquez, A ;
Rustin, P ;
Cardellach, F .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 229 (02) :536-539
[6]   Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state [J].
Bassenge, E ;
Sommer, O ;
Schwemmer, M ;
Bünger, R .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 279 (05) :H2431-H2438
[7]   High-Capacity Redox Control at the Plasma Membrane of Mammalian Cells: Trans-Membrane, Cell Surface, and Serum NADH-Oxidases [J].
Berridge, Michael V. ;
Tan, An S. .
ANTIOXIDANTS & REDOX SIGNALING, 2000, 2 (02) :231-242
[8]   Quantification and sequencing of somatic deleted mtDNA in single cells: evidence for partially duplicated mtDNA in aged human tissues [J].
Bodyak, ND ;
Nekhaeva, E ;
Wei, JY ;
Khrapko, K .
HUMAN MOLECULAR GENETICS, 2001, 10 (01) :17-24
[9]   STUDIES ON ACTIVE TRANSFER OF REDUCING EQUIVALENTS INTO MITOCHONDRIA VIA MALATE-ASPARTATE SHUTTLE [J].
BREMER, J ;
DAVIS, EJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 376 (03) :387-397
[10]   MICE LACKING EXTRACELLULAR-SUPEROXIDE DISMUTASE ARE MORE SENSITIVE TO HYPEROXIA [J].
CARLSSON, LM ;
JONSSON, J ;
EDLUND, T ;
MARKLUND, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6264-6268