A convergent adaptive algorithm for Poisson's equation

被引:946
作者
Dorfler, W
机构
[1] Inst. für Angewandte Mathematik, Universität Freiburg, D-79104 Freiburg
关键词
adaptive mesh refinement; a posteriori error estimator; Poisson's equation;
D O I
10.1137/0733054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
we construct a converging adaptive algorithm for linear elements applied to Poisson's equation in two space dimensions. Starting from a macro triangulation, we describe how to construct an initial triangulation from a priori information. Then we use a posteriori error estimators to get a sequence of refined triangulations and approximate solutions. It is proved that the error, measured in the energy norm, decreases at a constant rate in each step until a prescribed error bound is reached. Extensions to higher-order elements in two space dimensions and numerical results are included.
引用
收藏
页码:1106 / 1124
页数:19
相关论文
共 17 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
[Anonymous], FINITE ELEMENT METHO
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[5]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[6]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[7]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6
[8]  
Ciarlet P, 1979, STUDIES MATH ITS APP, V4
[9]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[10]   ON AN ADAPTIVE GRID REFINING TECHNIQUE FOR FINITE-ELEMENT APPROXIMATIONS [J].
JARAUSCH, H .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04) :1105-1120