Electric field induced director orientation of a nematic liquid crystal (LC)+carbon nanotube (CNT) system reveals insights on switching behavior for this anisotropic composite. Once the field goes off, the LC+CNT system relaxes back to the original orientation through a mechanical rotation, revealing the intrinsic dynamics. LC molecules and CNTs cooperatively form local pseudonematic domains in the isotropic phase due to strong LC-CNT interactions. These field-responsive anisotropic domains do not relax back to the original orientation on switching of the field off, which could find potential applications in memory devices.