Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy

被引:242
作者
Boulineau, Adrien [1 ]
Simonin, Loic [1 ]
Colin, Jean-Francois [1 ]
Canevet, Emmanuel [1 ]
Daniel, Lise [1 ]
Patoux, Sebastien [1 ]
机构
[1] CEA LITEN, F-38054 Grenoble 9, France
关键词
Li-rich layered oxides; lithium-ion battery; electron diffraction; HAADF STEM imaging; EELS; X-RAY-ABSORPTION; LINI0.5MN0.5O2 CATHODE MATERIAL; LOCAL-STRUCTURE; LAYERED OXIDE; LITHIUM; MN; STOICHIOMETRY; DIFFRACTION; NI; O3;
D O I
10.1021/cm301140g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The evolutions of the structure occurring into the lithium rich cobalt free layered cathode material Li1.2Mn0.61Ni0.18Mg0.01O2 upon the first electrochemical cycle were investigated by the means of high angle annular dark field (HAADF) imaging in a scanning transmission electron microscope and electron diffraction in a transmission electron microscope. They are coupled with electron energy loss spectroscopy (EELS) experiments in order to probe the chemical evolutions occurring during the first charge/discharge cycle. In the pristine material, the analysis of the HAADF images and electron diffraction patterns confirmed the ordering between the cations (Li or Ni with Mn) and the existence of disoriented domains stacked along the c axis. Moreover, the partial solid solution of Ni into Li2MnO3 leading to a composite material is evidenced. Upon the first charge, a loss of material is shown to have occurred, and the presence of a defect spinel phase due to the transfer of transition metal cations to the interslab is clearly established. It is localized at the edge of the particles. This defect spinel phase apparition is confirmed by EELS experiments and identified as (Li)Mn(2-x)NixO4. After the first discharge, the spinel phase is still present, and structural discrepancies from one crystal to another are observed. Also, it seems that all the domains would not have the same behavior upon discharge.
引用
收藏
页码:3558 / 3566
页数:9
相关论文
共 30 条
[1]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[2]   Local Structure of Layered Oxide Electrode Materials for Lithium-Ion Batteries [J].
Bareno, J. ;
Lei, C. H. ;
Wen, J. G. ;
Kang, S-H ;
Petrov, I. ;
Abraham, D. P. .
ADVANCED MATERIALS, 2010, 22 (10) :1122-1127
[3]   Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM [J].
Boulineau, A. ;
Croguennec, L. ;
Delmas, C. ;
Weill, F. .
CHEMISTRY OF MATERIALS, 2009, 21 (18) :4216-4222
[4]   Thermal stability of Li2MnO3: from localized defects to the spinel phase [J].
Boulineau, Adrien ;
Croguennec, Laurence ;
Delmas, Claude ;
Weill, Francois .
DALTON TRANSACTIONS, 2012, 41 (05) :1574-1581
[5]   Direct experimental determination of the atomic structure at internal interfaces [J].
Browning, ND ;
Pennycook, SJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (07) :1779-1798
[6]   OXYGEN 1S X-RAY-ABSORPTION EDGES OF TRANSITION-METAL OXIDES [J].
DEGROOT, FMF ;
GRIONI, M ;
FUGGLE, JC ;
GHIJSEN, J ;
SAWATZKY, GA ;
PETERSEN, H .
PHYSICAL REVIEW B, 1989, 40 (08) :5715-5723
[7]   Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution [J].
Jarvis, Karalee A. ;
Deng, Zengqiang ;
Allard, Lawrence F. ;
Manthiram, Arumugam ;
Ferreira, Paulo J. .
CHEMISTRY OF MATERIALS, 2011, 23 (16) :3614-3621
[8]   Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3•(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) [J].
Johnson, Christopher S. ;
Li, Naichao ;
Lefief, Christina ;
Vaughey, John T. ;
Thackeray, Michael M. .
CHEMISTRY OF MATERIALS, 2008, 20 (19) :6095-6106
[9]   The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1-x)LiMn0.5Ni0.5O2 electrodes [J].
Johnson, CS ;
Kim, JS ;
Lefief, C ;
Li, N ;
Vaughey, JT ;
Thackeray, MM .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (10) :1085-1091
[10]   Electrochemical and structural properties of xLi2M'O3•(1-x)LiMn0.5Ni0.5O2 eIectrodes for lithium batteries (M' = Ti, Mn, Zr; 0 ≤ x ≤ 0.3) [J].
Kim, JS ;
Johnson, CS ;
Vaughey, JT ;
Thackeray, MM ;
Hackney, SA .
CHEMISTRY OF MATERIALS, 2004, 16 (10) :1996-2006