Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multiphoton excitation

被引:51
作者
Basu, S [1 ]
Campagnola, PJ [1 ]
机构
[1] Univ Connecticut, Ctr Hlth, Dept Cell Biol, Ctr Biomed Imaging Technol, Farmington, CT 06030 USA
关键词
D O I
10.1021/bm0344194
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We demonstrate micron scale control of bioactivity through the use of multiphoton excited photochemistry, where this technique has been used to cross-link three-dimensional matrixes of alkaline phosphatase, bovine serum albumin, and polyacrylamide and combinations therein. Using a fluorescence-based assay (ELF-97), the enzymatic activity has been studied using a Michaelis-Menten analysis, and we have measured the specificity constants k(cat)/K-M for alkaline phosphatase in both the protein and polymer matrixes to be on the order of 10(5)-10(6) M-1 s(-1) and are comparable to known literature values in other environments. It is found that the enzyme is simply entrapped in the polymer matrix, whereas it is completely covalently bound in the protein structures. The relative reaction rate of alkaline phosphatase bound to BSA with the ELF substrate was measured as a function of cross-link density and was found to decrease in the more tightly formed matrixes, indicating a decrease in the diffusion in the matrix.
引用
收藏
页码:572 / 579
页数:8
相关论文
共 41 条
[1]   THE REACTION OF SINGLET OXYGEN WITH PROTEINS, WITH SPECIAL REFERENCE TO CRYSTALLINS [J].
BALASUBRAMANIAN, D ;
DU, X ;
ZIGLER, JS .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1990, 52 (04) :761-768
[2]   Two-photon photochromism of an organic material for holographic recording [J].
Belfield, KD ;
Liu, Y ;
Negres, RA ;
Fan, M ;
Pan, G ;
Hagan, DJ ;
Hernandez, FE .
CHEMISTRY OF MATERIALS, 2002, 14 (09) :3663-3667
[3]  
Bhawalkar JD, 1996, SCANNING, V18, P562, DOI 10.1002/sca.4950180805
[4]   Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery [J].
Brown, EB ;
Wu, ES ;
Zipfel, W ;
Webb, WW .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2837-2849
[5]   An integrated nanoliter DNA analysis device [J].
Burns, MA ;
Johnson, BN ;
Brahmasandra, SN ;
Handique, K ;
Webster, JR ;
Krishnan, M ;
Sammarco, TS ;
Man, PM ;
Jones, D ;
Heldsinger, D ;
Mastrangelo, CH ;
Burke, DT .
SCIENCE, 1998, 282 (5388) :484-487
[6]   3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes [J].
Campagnola, PJ ;
Delguidice, DM ;
Epling, GA ;
Hoffacker, KD ;
Howell, AR ;
Pitts, JD ;
Goodman, SL .
MACROMOLECULES, 2000, 33 (05) :1511-1513
[7]   Micropatterned surfaces for control of cell shape, position, and function [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
BIOTECHNOLOGY PROGRESS, 1998, 14 (03) :356-363
[8]   Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors [J].
Clark, HA ;
Hoyer, M ;
Philbert, MA ;
Kopelman, R .
ANALYTICAL CHEMISTRY, 1999, 71 (21) :4831-4836
[9]   Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors [J].
Clark, HA ;
Kopelman, R ;
Tjalkens, R ;
Philbert, MA .
ANALYTICAL CHEMISTRY, 1999, 71 (21) :4837-4843
[10]   A high-resolution, fluorescence-based method for localization of endogenous alkaline phosphatase activity [J].
Cox, WG ;
Singer, VL .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1999, 47 (11) :1443-1455