Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids

被引:124
作者
Barbes, Benigno [1 ]
Paramo, Ricardo [1 ]
Blanco, Eduardo [2 ]
Jose Pastoriza-Gallego, Maria [3 ]
Pineiro, Manuel M. [3 ]
Luis Legido, Jose [3 ]
Casanova, Carlos [1 ]
机构
[1] Univ Valladolid, Dept Fis Aplicada, E-47005 Valladolid, Spain
[2] Univ Oviedo, Area Mecan Fluidos, Gijon 33271, Spain
[3] Univ Vigo, Dept Fis Aplicada, Fac Ciencias, Vigo 36310, Spain
关键词
Thermal conductivity; Specific heat capacity; Nanofluid; Coaxial cylinder method; Microcalorimeter; PARTICLE-SIZE; ENHANCEMENT; TEMPERATURE; OXIDE; LIQUIDS; FLUIDS;
D O I
10.1007/s10973-012-2534-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the "scanning or continuous method." The Hamilton-Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified.
引用
收藏
页码:1615 / 1625
页数:11
相关论文
共 55 条
[1]   The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid) [J].
Amrollahi, A. ;
Hamidi, A. A. ;
Rashidi, A. M. .
NANOTECHNOLOGY, 2008, 19 (31)
[2]  
[Anonymous], 2007, NANOFLUIDS SCI TECHN
[3]  
[Anonymous], 1891, TREATISE ELECT MAGNE
[4]   THE THERMAL-CONDUCTIVITY OF NORMAL-HEXANE, NORMAL-HEPTANE, AND NORMAL-DECANE BY THE TRANSIENT HOT-WIRE METHOD [J].
ASSAEL, MJ ;
CHARITIDOU, E ;
DECASTRO, CAN ;
WAKEHAM, WA .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1987, 8 (06) :663-670
[5]   Thermal conductivity measurement of liquids by means of a microcalorimeter [J].
Barbes, Benigno ;
Paramo, Ricardo ;
Sobron, Francisco ;
Blanco, Eduardo ;
Casanova, Carlos .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2011, 104 (02) :805-812
[6]   The effect of particle size on the thermal conductivity of alumina nanofluids [J].
Beck, Michael P. ;
Yuan, Yanhui ;
Warrier, Pramod ;
Teja, Amyn S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (05) :1129-1136
[7]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[8]  
Calvet E., 1963, RECENT PROGR MICROCA
[9]  
Choi SUS, 2009, T ASME, V131
[10]   Thermal conductivity enhancement of nanofluids by Brownian motion [J].
Chon, CH ;
Kihm, KD .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (08) :810-810