Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells

被引:219
作者
Bernardo, B. [1 ]
Cheyns, D. [2 ]
Verreet, B. [2 ]
Schaller, R. D. [3 ,4 ]
Rand, B. P. [2 ,5 ]
Giebink, N. C. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] IMEC, B-3001 Leuven, Belgium
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Princeton Univ, Andlinger Ctr Energy & Environm, Dept Elect Engn, Princeton, NJ 08544 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
关键词
OPEN-CIRCUIT VOLTAGE; TRANSFER EXCITONS; SEPARATION; DISSOCIATION; CRYSTALLIZATION; ENERGY;
D O I
10.1038/ncomms4245
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Charge transfer (CT) states at a donor-acceptor heterojunction have a key role in the charge photogeneration process of organic solar cells, however, the mechanism by which these states dissociate efficiently into free carriers remains unclear. Here we explore the nature of these states in small molecule-fullerene bulk heterojunction photovoltaics with varying fullerene fraction and find that the CT energy scales with dielectric constant at high fullerene loading but that there is a threshold C-60 crystallite size of similar to 4 nm below which the spatial extent of these states is reduced. Electroabsorption measurements indicate an increase in CT polarizability when C-60 crystallite size exceeds this threshold, and that this change is correlated with increased charge separation yield supported by CT photoluminescence transients. These results support a model of charge separation via delocalized CT states independent of excess heterojunction offset driving energy and indicate that local fullerene crystallinity is critical to the charge separation process.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
Atkins P.W., 1970, MOL QUANTUM MECH
[2]   The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors [J].
Bakulin, Artem A. ;
Rao, Akshay ;
Pavelyev, Vlad G. ;
van Loosdrecht, Paul H. M. ;
Pshenichnikov, Maxim S. ;
Niedzialek, Dorota ;
Cornil, Jerome ;
Beljonne, David ;
Friend, Richard H. .
SCIENCE, 2012, 335 (6074) :1340-1344
[3]   Influence of Crystallinity and Energetics on Charge Separation in Polymer-Inorganic Nanocomposite Films for Solar Cells [J].
Bansal, Neha ;
Reynolds, Luke X. ;
MacLachlan, Andrew ;
Lutz, Thierry ;
Ashraf, Raja Shahid ;
Zhang, Weimin ;
Nielsen, Christian B. ;
McCulloch, Iain ;
Rebois, Dylan G. ;
Kirchartz, Thomas ;
Hill, Michael S. ;
Molloy, Kieran C. ;
Nelson, Jenny ;
Haque, Saif A. .
SCIENTIFIC REPORTS, 2013, 3
[4]   Charge Photogeneration in Organic Solar Cells [J].
Clarke, Tracey M. ;
Durrant, James R. .
CHEMICAL REVIEWS, 2010, 110 (11) :6736-6767
[5]   Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells [J].
Deibel, Carsten ;
Strobel, Thomas ;
Dyakonov, Vladimir .
ADVANCED MATERIALS, 2010, 22 (37) :4097-4111
[6]   Ideal diode equation for organic heterojunctions. I. Derivation and application [J].
Giebink, N. C. ;
Wiederrecht, G. P. ;
Wasielewski, M. R. ;
Forrest, S. R. .
PHYSICAL REVIEW B, 2010, 82 (15)
[7]   Thermodynamic efficiency limit of excitonic solar cells [J].
Giebink, Noel C. ;
Wiederrecht, Gary P. ;
Wasielewski, Michael R. ;
Forrest, Stephen R. .
PHYSICAL REVIEW B, 2011, 83 (19)
[8]   RADIATIVE AND NONRADIATIVE ELECTRON-TRANSFER IN CONTACT RADICAL-ION PAIRS [J].
GOULD, IR ;
NOUKAKIS, D ;
GOMEZJAHN, L ;
YOUNG, RH ;
GOODMAN, JL ;
FARID, S .
CHEMICAL PHYSICS, 1993, 176 (2-3) :439-456
[9]  
Jailaubekov AE, 2013, NAT MATER, V12, P66, DOI [10.1038/NMAT3500, 10.1038/nmat3500]
[10]   Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells [J].
Jamieson, Fiona C. ;
Domingo, Ester Buchaca ;
McCarthy-Ward, Thomas ;
Heeney, Martin ;
Stingelin, Natalie ;
Durrant, James R. .
CHEMICAL SCIENCE, 2012, 3 (02) :485-492