Analysis of ITO thin layers and interfaces in heterojunction solar cells structures by AFM, SCM and. SSRM methods

被引:18
作者
Maknys, K.
Ulyashin, A. G.
Stiebig, H.
Kuznetsov, A. Yu.
Svensson, B. G.
机构
[1] Univ Oslo, Dept Phys, Ctr Mat Sci & Nanotechnol, NO-0316 Oslo, Norway
[2] Forschungszentrum Julich, Inst Photovolt, D-52425 Julich, Germany
关键词
AFM; SCM; SSRM; ITO; silicon; heterejunction solar cells; SCANNING CAPACITANCE MICROSCOPY; SPREADING RESISTANCE MICROSCOPY; H/C-SI HETEROJUNCTION; CRYSTALLINE SILICON; EFFICIENCY;
D O I
10.1016/j.tsf.2005.12.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic force microscopy (AFM), scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) were used for the analysis of the morphology and electrical properties of heterojunction (HJ) solar cell structures made of Indium Tin Oxides (ITO) layers deposited on p-type polished Si substrates with a buffer layer of n-type hydrogenated amorphous Si (a-Si:H). By means of AFM measurements it is shown that the a-Si:H layer can be deposited on a Si substrate quite homogeneously with a roughness of only a few nanometers. In contrast, the morphology of the ITO layers depends on the deposition temperature and can be varied during the HJ solar cell processing. Cross section analysis of the HJ structures by SCM shows penetration of n-type carriers into the (p)Si bulk substrate and the formation of the resulting n-p electrical junction depends strongly on the ITO deposition temperature and the presence of the (n)a-Si:H layer. Complementary cross section SSRM measurements show only a highly n-type doped region confined to the ITO layer. Finally it is concluded that the properties of the HJ solar cell structures depend dramatically on the properties of the ITO layers and can be modified by variation of the ITO deposition temperature. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 102
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 2003, EL APPL MOD DIM MULT
[2]   Two-dimensional carrier profiling of InP structures using scanning spreading resistance microscopy [J].
De Wolf, P ;
Geva, M ;
Hantschel, T ;
Vandervorst, W ;
Bylsma, RB .
APPLIED PHYSICS LETTERS, 1998, 73 (15) :2155-2157
[3]  
*DI VEEC METR GROU, 2001, NANOSCOPE COMM REF M
[4]  
FONASH SJ, 1981, SOLAR CELL DEVICE PH, P332
[5]   Interface recombination in heterojunctions of amorphous and crystalline silicon [J].
Froitzheim, A ;
Brendel, K ;
Elstner, L ;
Fuhs, W ;
Kliefoth, K ;
Schmidt, M .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 299 :663-667
[6]  
GUDOVSKIKH AS, 2004, 9 EUR PHOT SOL EN C, V1, P687
[7]   Study of the interface in n+μ-Si/p-type c-Si heterojunctions:: role of the fluorine chemistry in the interface passivation [J].
Losurdo, M ;
Grimaldi, A ;
Sacchetti, A ;
Capezzuto, P ;
Ambrico, M ;
Bruno, G ;
Roca, F .
THIN SOLID FILMS, 2003, 427 (1-2) :171-175
[8]   Electrical characterization of InGaAs/InP quantum wells by scanning capacitance microscopy [J].
Maknys, K ;
Douhéret, O ;
Anand, S .
APPLIED PHYSICS LETTERS, 2003, 83 (20) :4205-4207
[9]   Probing carriers in two-dimensional systems with high spatial resolution by scanning spreading resistance microscopy [J].
Maknys, K ;
Douhéret, O ;
Anand, S .
APPLIED PHYSICS LETTERS, 2003, 83 (11) :2184-2186
[10]  
ROCA F, 2004, 9 EUR PHOT SOL EN C, V2, P1321