Bipartite regulation of different components of the MHC class I antigen-processing machinery during dendritic cell maturation

被引:43
作者
Li, J
Schuler-Thurner, B
Schuler, G
Huber, C
Seliger, B [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Dept Internal Med 3, D-55131 Mainz, Germany
[2] Univ Erlangen Nurnberg, Dept Dermatol, D-91052 Erlangen, Germany
关键词
antigen processing; dendritic cells; immune response; MHC;
D O I
10.1093/intimm/13.12.1515
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Dendritic cells (DC) are professional antigen-presenting cells (APC) which proceed from immature to a mature stage during their final differentiation. Immature DC are highly effective in terms of antigen uptake and processing, whereas mature DC become potent immunostimulatory cells. Until now, the expression profiles of the major components of the MHC class I antigen-processing machinery (APM) during DC development have not been well characterized. In this study, the mRNA and protein expression levels of the IFN-gamma inducible proteasome subunits, of the proteasome activators PA28, and of key components required for peptide transport and MHC class I-peptide complex assembly have been evaluated in immature and mature stages of human monocyte-derived DC using semiquantitative RT-PCR and Western blot analyses. The IFN-gamma -responsive immunoproteasome subunits LMP2, LMP7 and MECL1 are up-regulated in immature DC, whereas the other components of the MHC class I presentation machinery, such as PA28, TAP, tapasin, and HLA heavy and light chains, were found to be more abundant in mature DC. These findings support the hypothesis that immature DC produced by the differentiation of monocytes in response to IL-4 and granulocyte macrophage colony stimulating factor first increase their capacity to capture antigens and process them into peptides, thereby switching from housekeeping to immunoproteasomes, while mature DC rather up-regulate the components required for peptide translocation and MHC class I-peptide complex formation, and thus specialize in antigen presentation. Our results establish that MHC class I, like MHC class II surface expression, is markedly regulated during DC development and maturation.
引用
收藏
页码:1515 / 1523
页数:9
相关论文
共 55 条
[21]  
KOCH F, 1995, J IMMUNOL, V155, P93
[22]  
Labeur MS, 1999, J IMMUNOL, V162, P168
[23]   Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line .220 [J].
Lehner, PJ ;
Surman, MJ ;
Cresswell, P .
IMMUNITY, 1998, 8 (02) :221-231
[24]   ENDOCYTOSIS BY ANTIGEN PRESENTING CELLS - DENDRITIC CELLS ARE AS ENDOCYTICALLY ACTIVE AS OTHER ANTIGEN PRESENTING CELLS [J].
LEVINE, TP ;
CHAIN, BM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (17) :8342-8346
[25]  
Macagno A, 1999, EUR J IMMUNOL, V29, P4037, DOI 10.1002/(SICI)1521-4141(199912)29:12<4037::AID-IMMU4037>3.0.CO
[26]  
2-T
[27]   FUNCTIONAL EXPRESSION AND PURIFICATION OF THE ABC TRANSPORTER COMPLEX-ASSOCIATED WITH ANTIGEN-PROCESSING (TAP) IN INSECT CELLS [J].
MEYER, TH ;
VANENDERT, PM ;
UEBEL, S ;
EHRING, B ;
TAMPE, R .
FEBS LETTERS, 1994, 351 (03) :443-447
[28]  
Mitchell DA, 1998, EUR J IMMUNOL, V28, P1923, DOI 10.1002/(SICI)1521-4141(199806)28:06<1923::AID-IMMU1923>3.0.CO
[29]  
2-9
[30]   Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells [J].
Nestle, FO ;
Alijagic, S ;
Gilliet, M ;
Sun, YS ;
Grabbe, S ;
Dummer, R ;
Burg, G ;
Schadendorf, D .
NATURE MEDICINE, 1998, 4 (03) :328-332