Hamiltonian-versus-energy diagrams in soliton theory

被引:72
作者
Akhmediev, N [1 ]
Ankiewicz, A
Grimshaw, R
机构
[1] Australian Natl Univ, Ctr Opt Sci, Australian Photon CRC, Canberra, ACT 0200, Australia
[2] Monash Univ, Dept Math & Stat, Clayton, Vic 3168, Australia
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 05期
关键词
D O I
10.1103/PhysRevE.59.6088
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Parametric curves featuring Hamiltonian versus energy are useful in the theory of solitons in conservative nonintegrable systems with local nonlinearities. These curves can be constructed in various ways. We show here that it is possible to find the Hamiltonian (H) and energy (Q) for solitons of non-Kerr-law media with local nonlinearities without specific knowledge of the functional form of the soliton itself More importantly, we show that the stability criterion for solitons can be formulated in terms of PI and Q only. This allows us to derive all the essential properties of solitons based only on the concavity of the curve H vs Q. We give examples of these curves for various nonlinearity laws and show that they confirm the general principle. We also show that solitons of an unstable branch can transform into solitons of a stable branch by emitting small amplitude waves. Asa result, we show that simple dynamics Like the transformation of a soliton of an unstable branch into a soliton of a stable branch can also be predicted from the H-Q diagram. [S1063-651X(99)09805-0].
引用
收藏
页码:6088 / 6096
页数:9
相关论文
共 37 条
[21]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197
[22]   INSTABILITY OF STANDING WAVES IN NONLINEAR OPTICAL WAVE-GUIDES [J].
JONES, CKRT ;
MOLONEY, JV .
PHYSICS LETTERS A, 1986, 117 (04) :175-180
[23]   BISTABLE SOLITONS [J].
KAPLAN, AE .
PHYSICAL REVIEW LETTERS, 1985, 55 (12) :1291-1294
[24]  
KOLOKOLOV AA, 1973, PRIKL MEKH TEKH FIZ, V3, P152
[25]   DARKER-THAN-BLACK SOLITONS - DARK SOLITONS WITH TOTAL PHASE-SHIFT GREATER-THAN PI [J].
KROLIKOWSKI, W ;
AKHMEDIEV, N ;
LUTHERDAVIES, B .
PHYSICAL REVIEW E, 1993, 48 (05) :3980-3987
[26]   APPLICATION OF CATASTROPHE-THEORY TO MOLECULES AND SOLITONS [J].
KUSMARTSEV, FV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 183 (01) :1-35
[27]   STABILITY OF FUNDAMENTAL NONLINEAR GUIDED-WAVES [J].
MITCHELL, DJ ;
SNYDER, AW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (09) :1572-1580
[28]   Mixed-mode spatial solitons in semiconductor waveguides [J].
Ostrovskaya, EA ;
Akhmediev, NN ;
Stegeman, GI ;
Kang, JU ;
Aitchison, JS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (04) :880-887
[29]  
PELINOVSKY DE, 1997, ADV FLUID MECH SERIE, P245
[30]   BLOW-UP IN NONLINEAR SCHROEDINGER EQUATIONS .1. A GENERAL-REVIEW [J].
RASMUSSEN, JJ ;
RYPDAL, K .
PHYSICA SCRIPTA, 1986, 33 (06) :481-497