Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles

被引:53
作者
Gondre-Lewis, Marjorie C. [1 ]
Park, Joshua J. [2 ]
Loh, Y. Peng [3 ]
机构
[1] Howard Univ, Dept Anat, Lab Neurodev, Coll Med, Washington, DC 20059 USA
[2] Univ Toledo, Dept Neurosci, Sch Med, Toledo, OH 43606 USA
[3] Eunice Kennedy Shiiver Natl Inst Child Hlth & Hum, Cellular Neurobiol Sect, Program Dev Neurosci, NIH, Bethesda, MD USA
来源
INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 299 | 2012年 / 299卷
关键词
REGULATED SECRETORY PATHWAY; PANCREATIC BETA-CELLS; VESICULAR ACETYLCHOLINE TRANSPORTER; FRAGILE-X-SYNDROME; FROG NEUROMUSCULAR-JUNCTION; AMYLOID PRECURSOR PROTEIN; PRESYNAPTIC ACTIVE ZONE; ADP-RIBOSYLATION FACTOR; GTP-BINDING PROTEIN; HIPPOCAMPAL EXCITATORY SYNAPSES;
D O I
10.1016/B978-0-12-394310-1.00002-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The release of intercellular messengers from synaptic (SVs) and dense-core vesicles (DCVs) constitutes the primary mechanism for communication between neighboring or distant cells and organs in response to stimuli. Here we review the life span of SVs and DCVs found in the brain, neuroendocrine and exocrine tissues. These vesicles must be formed, trafficked, and their contents secreted; processes which require orchestrated actions of a great repertoire of lipids, proteins, and enzymes. For biogenesis and vesicular budding, lipids that influence curvature and aggregation of cargo are necessary for pinching off of vesicles. Vesicles travel on cytoskeletal filaments powered by motors that control the dynamics: location, speed, and directionality of movement. Regardless of mechanisms of traffic, vesicles arrive at sites of release and are docked for exocytosis, followed by membrane fusion, and release of vesicular content to exert physiological responses. Neurological disorders with pathology involving abnormal vesicular budding, trafficking, or secretion are discussed.
引用
收藏
页码:27 / 115
页数:89
相关论文
共 462 条
[1]   gamma-aminobutyric acid secretion from pancreatic neuroendocrine cells [J].
AhnertHilger, G ;
Stadtbaumer, A ;
Strubing, C ;
Scherubl, H ;
Schultz, G ;
Riecken, EO ;
Wiedenmann, B .
GASTROENTEROLOGY, 1996, 110 (05) :1595-1604
[2]   Rab27a:: a new face in β cell metabolism-secretion coupling [J].
Aizawa, T ;
Komatsu, M .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (02) :227-230
[3]   Discovery of the 'porosome'; the universal secretory machinery in cells [J].
Anderson, L. L. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2006, 10 (01) :126-131
[4]   Neuropeptide Release Is Impaired in a Mouse Model of Fragile X Mental Retardation Syndrome [J].
Annangudi, Suresh P. ;
Luszpak, Agatha E. ;
Kim, Soong Ho ;
Ren, Shifang ;
Hatcher, Nathan G. ;
Weiler, Ivan Jeanne ;
Thornley, Keith T. ;
Kile, Brian M. ;
Wightman, R. Mark ;
Greenough, William T. ;
Sweedler, Jonathan V. .
ACS CHEMICAL NEUROSCIENCE, 2010, 1 (04) :306-314
[5]   Distribution of neurotransmitter secretion in growing axons [J].
Antonov, I ;
Chang, S ;
Zakharenko, S ;
Popov, SV .
NEUROSCIENCE, 1999, 90 (03) :975-984
[6]   TOPOGRAPHY OF A VACUOLAR-TYPE H+-TRANSLOCATING ATPASE - CHROMAFFIN-GRANULE MEMBRANE ATPASE-I [J].
APPS, DK ;
PERCY, JM ;
PEREZCASTINEIRA, JR .
BIOCHEMICAL JOURNAL, 1989, 263 (01) :81-88
[7]  
ARISPE N, 1992, J MEMBRANE BIOL, V130, P191
[8]   Recycling of raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6 [J].
Arnaoutova, I ;
Jackson, CL ;
Al-Awar, MS ;
Donaldson, JG ;
Loh, YP .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (11) :4448-4457
[9]   Aquaporin 1 is important for maintaining secretory granule biogenesis in endocrine cells [J].
Arnaoutova, Irina ;
Cawley, Niamh X. ;
Patel, Nimesh ;
Kim, Taeyoon ;
Rathod, Trushar ;
Loh, Y. Peng .
MOLECULAR ENDOCRINOLOGY, 2008, 22 (08) :1924-1934
[10]   The C-terminus of prohormone convertase 2 is sufficient and necessary for raft association and sorting to the regulated secretory pathway [J].
Assadi, M ;
Sharpe, JC ;
Snell, C ;
Loh, YP .
BIOCHEMISTRY, 2004, 43 (24) :7798-7807