Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells

被引:112
作者
Samper, E [1 ]
Fernández, P [1 ]
Eguía, R [1 ]
Martín-Rivera, L [1 ]
Bernad, A [1 ]
Blasco, MA [1 ]
Aracil, M [1 ]
机构
[1] CSIC, Dept Immunol & Oncol, Ctr Nacl Biotecnol, E-28049 Madrid, Spain
关键词
D O I
10.1182/blood.V99.8.2767
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Telomere length must be tightly regulated in highly proliferative tissues, such as the lymphohematopoietic system. Under steady-state conditions, the levels and functionality of hematopoietic-committed or multipotent progenitors were not affected in late-generation telomerase-deficient mice (mTerc(-/-)) with critically short telomeres. Evaluation of self-renewal potential of mTerc(-/-) day-12 spleen colony-forming units demonstrated no alteration as compared with wildtype progenitors. However, the replating ability of mTerc(-/-) granulocyte-macrophage CIFUs (CFU-GMs) was greatly reduced as compared with wildtype CFU-GMs, indicating a diminished capacity of late-generation mTerc(-/-) committed progenitors when forced to proliferate. Long-term bone marrow cultures of mTerc(-/-) bone marrow (BM) cells show a reduction in proliferative capacity; this defect can be mainly attributed to the hematopoietic, not to the stromal, mTerc-/- cells. In serial and competitive transplantations, mTerc(-/-) BM stem cells show reduced long-term repopulating capacity, concomitant with an increase in genetic instability compared with wild-type cells. Nevertheless, in competitive transplantations late-generation mTerc(-/-) precursors ran occasionally overcome this proliferative impairment and reconstitute irradiated recipients. in summary, our results demonstrate that late-generation mTerc(-/-) BM cells with short telomeres, although exhibiting reduced proliferation ability and reduced long-term repopulating capacity, can still reconstitute myeloablated animals maintaining stem cell function. (C) 2002 by The American Society of Hematology.
引用
收藏
页码:2767 / 2775
页数:9
相关论文
共 44 条
[1]   Changes of telomere length in children after hematopoietic stem cell transplantation [J].
Akiyama, M ;
Hoshi, Y ;
Sakurai, S ;
Yamada, H ;
Yamada, O ;
Mizoguchi, H .
BONE MARROW TRANSPLANTATION, 1998, 21 (02) :167-171
[2]   MOUSE LYMPHOMA CELLS WITH DIFFERENT RADIOSENSITIVITIES [J].
ALEXANDER, P .
NATURE, 1961, 192 (480) :572-&
[3]   TELOMERE LENGTH PREDICTS REPLICATIVE CAPACITY OF HUMAN FIBROBLASTS [J].
ALLSOPP, RC ;
VAZIRI, H ;
PATTERSON, C ;
GOLDSTEIN, S ;
YOUNGLAI, EV ;
FUTCHER, AB ;
GREIDER, CW ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10114-10118
[4]   Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells [J].
Allsopp, RC ;
Cheshier, S ;
Weissman, IL .
JOURNAL OF EXPERIMENTAL MEDICINE, 2001, 193 (08) :917-924
[5]   TELOMERASES [J].
BLACKBURN, EH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1992, 61 :113-129
[6]   STRUCTURE AND FUNCTION OF TELOMERES [J].
BLACKBURN, EH .
NATURE, 1991, 350 (6319) :569-573
[7]   FUNCTIONAL-CHARACTERIZATION AND DEVELOPMENTAL REGULATION OF MOUSE TELOMERASE RNA [J].
BLASCO, MA ;
FUNK, W ;
VILLEPONTEAU, B ;
GREIDER, CW .
SCIENCE, 1995, 269 (5228) :1267-1270
[8]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[9]   The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit [J].
Bryan, TM ;
Marusic, L ;
Bacchetti, S ;
Namba, M ;
Reddel, RR .
HUMAN MOLECULAR GENETICS, 1997, 6 (06) :921-926
[10]   Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow [J].
Chiu, CP ;
Dragowska, W ;
Kim, NW ;
Vaziri, H ;
Yui, J ;
Thomas, TE ;
Harley, CB ;
Lansdorp, PM .
STEM CELLS, 1996, 14 (02) :239-248