Genes involved in pre-mRNA 3′-end formation and transcription termination revealed by a lin-15 operon Muv suppressor screen

被引:47
作者
Cui, Mingxue [1 ,2 ]
Allen, Mary Ann [1 ]
Larsen, Alison [1 ]
MacMorri, Margaret [1 ]
Han, Min [1 ,2 ]
Blumenthal, Tom [1 ]
机构
[1] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
关键词
Caenorhabditis elegans operon; RNA polymerase II C-terminal domain; SRp20; CTD;
D O I
10.1073/pnas.0807104105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA polymerase II (Pol II) transcription termination involves two linked processes: mRNA T-end formation and release of Pol II from DNA. Signals for 3' processing are recognized by a protein complex that includes cleavage polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF). Here we identify suppressors encoding proteins that play roles in processes at the 3' ends of genes by exploiting a mutation in which the 3' end of another gene is transposed into the first gene of the Calenorhabditis elegans lin-15 operon. As expected, genes encoding CPSF and CstF were identified in the screen. We also report three suppressors encoding proteins containing a domain that interacts with the C-terminal domain of Pol II (CID). We show that two of the CID proteins are needed for efficient 3'cleavage and thus may connect transcription termination with RNA cleavage. Furthermore, our results implicate a serine/arginine-rich (SR) protein, SRp20, in events following 3'-end cleavage, leading to termination of transcription.
引用
收藏
页码:16665 / 16670
页数:6
相关论文
共 36 条
[1]   Termination of cryptic unstable transcripts is directed by yeast RNA-Binding proteins Nrd1 and Nab3 [J].
Arigo, John T. ;
Eyler, Daniel E. ;
Carroll, Kristina L. ;
Corden, Jeffry L. .
MOLECULAR CELL, 2006, 23 (06) :841-851
[2]   Regulation of yeast NRD1 expression by premature transcription termination [J].
Arigo, JT ;
Carroll, KL ;
Ames, JM ;
Corden, JL .
MOLECULAR CELL, 2006, 21 (05) :641-651
[3]   Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae [J].
Barillà, D ;
Lee, BA ;
Proudfoot, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :445-450
[4]   Coupling termination of transcription to messenger RNA maturation in yeast [J].
Birse, CE ;
Minvielle-Sebastia, L ;
Lee, BA ;
Keller, W ;
Proudfoot, NJ .
SCIENCE, 1998, 280 (5361) :298-301
[5]   A global analysis of Caenorhabditis elegans operons [J].
Blumenthal, T ;
Evans, D ;
Link, CD ;
Guffanti, A ;
Lawson, D ;
Thierry-Mieg, J ;
Thierry-Mieg, D ;
Chiu, WL ;
Duke, K ;
Kiraly, M ;
Kim, SK .
NATURE, 2002, 417 (6891) :851-854
[6]   Connections between mRNA 3′ end processing and transcription termination [J].
Buratowski, S .
CURRENT OPINION IN CELL BIOLOGY, 2005, 17 (03) :257-261
[7]   CONTROL OF CELL FATES IN THE CENTRAL BODY REGION OF C-ELEGANS BY THE HOMEOBOX GENE LIN-39 [J].
CLARK, SG ;
CHISHOLM, AD ;
HORVITZ, HR .
CELL, 1993, 74 (01) :43-55
[8]  
CLARK SG, 1994, GENETICS, V137, P987
[9]   A FUNCTIONAL MESSENGER-RNA POLYADENYLATION SIGNAL IS REQUIRED FOR TRANSCRIPTION TERMINATION BY RNA POLYMERASE-II [J].
CONNELLY, S ;
MANLEY, JL .
GENES & DEVELOPMENT, 1988, 2 (04) :440-452
[10]   RNA POLYMERASE-II TRANSCRIPTION TERMINATION IS MEDIATED SPECIFICALLY BY PROTEIN-BINDING TO A CCAAT BOX SEQUENCE [J].
CONNELLY, S ;
MANLEY, JL .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5254-5259