Model of biological evolution with threshold dynamics and infinitely many absorbing states

被引:20
作者
Lipowski, A [1 ]
Lopata, M
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Adam Mickiewicz Univ, Dept Phys, PL-61614 Poznan, Poland
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevE.60.1516
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a model of biological evolution where the survival of a given species depends on its interactions with neighboring species. In the steady state the model has an active phase and an absorbing phase, which are separated by the critical point of the directed percolation universality class. The absorbing phase is infinitely degenerate and the dynamical behavior of our model is found to be nonuniversal. [S1063-651X(99)12908-8].
引用
收藏
页码:1516 / 1519
页数:4
相关论文
共 22 条
[1]   PUNCTUATED EQUILIBRIUM AND CRITICALITY IN A SIMPLE-MODEL OF EVOLUTION [J].
BAK, P ;
SNEPPEN, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4083-4086
[2]   CRITICAL EXPONENTS FOR REGGEON QUANTUM SPIN MODEL [J].
BROWER, RC ;
FURMAN, MA ;
MOSHE, M .
PHYSICS LETTERS B, 1978, 76 (02) :213-219
[3]   Entropic sampling and natural selection in biological evolution [J].
Choi, MY ;
Lee, HY ;
Kim, D ;
Park, SH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (22) :L749-L755
[4]  
Durrett R., 1988, LECT NOTES PARTICLE
[5]   ARE DAMAGE SPREADING TRANSITIONS GENERICALLY IN THE UNIVERSALITY CLASS OF DIRECTED PERCOLATION [J].
GRASSBERGER, P .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (1-2) :13-23
[6]   REGGEON FIELD-THEORY (SCHLOGL 1ST MODEL) ON A LATTICE - MONTE-CARLO CALCULATIONS OF CRITICAL BEHAVIOR [J].
GRASSBERGER, P ;
DELATORRE, A .
ANNALS OF PHYSICS, 1979, 122 (02) :373-396
[7]   THE BAK-SNEPPEN MODEL FOR PUNCTUATED EVOLUTION [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1995, 200 (3-4) :277-282
[8]   ON PHASE-TRANSITIONS IN SCHLOGL 2ND MODEL [J].
GRASSBERGER, P .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 47 (04) :365-374
[9]   Stochastic lattice models with several absorbing states [J].
Hinrichsen, H .
PHYSICAL REVIEW E, 1997, 55 (01) :219-226
[10]   ON THE NON-EQUILIBRIUM PHASE-TRANSITION IN REACTION-DIFFUSION SYSTEMS WITH AN ABSORBING STATIONARY STATE [J].
JANSSEN, HK .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 42 (02) :151-154