Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity

被引:261
作者
Lovley, Derek R. [1 ]
Nevin, Kelly P. [1 ]
机构
[1] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA
关键词
SYNTHESIS GAS FERMENTATION; ELECTRON-TRANSFER; CONVERSION; REDUCTION; ELECTROSYNTHESIS; GEOBACTER; EXCHANGE; ETHANOL; METHANE; ROUTE;
D O I
10.1016/j.copbio.2013.02.012
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Electricity can be an energy source for microbially catalyzed production of fuels and other organic commodities from carbon dioxide. These electrobiocommodities (E-BCs) can be produced directly via electrode-to-microbe electron transfer or indirectly with electrochemically generated electron donors such as H-2 or formate. Producing E-BCs may be a more efficient and environmentally sustainable strategy for converting solar energy to biocommodities than approaches that rely on biological photosynthesis. A diversity of microbial physiologies could potentially be adapted for E-BC production, but to date acetogenic microorganisms are the only organisms shown to covert electrically generated low potential electrons and carbon dioxide into multi-carbon organic products with high recovery of electrons in product. Substantial research and development will be required for E-BC commercialization.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 46 条
[11]   Sulfide-Driven Microbial Electrosynthesis [J].
Gong, Yanming ;
Ebrahim, Ali ;
Feist, Adam M. ;
Embree, Mallory ;
Zhang, Tian ;
Lovley, Derek ;
Zengler, Karsten .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (01) :568-573
[12]   Fuel and Chemical Products from Biomass Syngas: A Comparison of Gas Fermentation to Thermochemical Conversion Routes [J].
Griffin, Derek W. ;
Schultz, Michael A. .
ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2012, 31 (02) :219-224
[13]   Extremely Thermophilic Routes to Microbial Electrofuels [J].
Hawkins, Aaron S. ;
Han, Yejun ;
Lian, Hong ;
Loder, Andrew J. ;
Menon, Angeli L. ;
Iwuchukwu, Ifeyinwa J. ;
Keller, Matthew ;
Leuko, Therese T. ;
Adams, Michael W. W. ;
Kelly, Robert M. .
ACS CATALYSIS, 2011, 1 (09) :1043-1050
[14]   Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation [J].
Huang, Wei-Dong ;
Zhang, Y. -H. Percival .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :784-792
[15]   Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals [J].
Kato, Souichiro ;
Hashimoto, Kazuhito ;
Watanabe, Kazuya .
ENVIRONMENTAL MICROBIOLOGY, 2012, 14 (07) :1646-1654
[16]   Biomass Production from Electricity Using Ammonia as an Electron Carrier in a Reverse Microbial Fuel Cell [J].
Khunjar, Wendell O. ;
Sahin, Asli ;
West, Alan C. ;
Chandran, Kartik ;
Banta, Scott .
PLOS ONE, 2012, 7 (09)
[17]   2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas [J].
Koepke, Michael ;
Mihalcea, Christophe ;
Liew, FungMin ;
Tizard, Joseph H. ;
Ali, Mohammed S. ;
Conolly, Joshua J. ;
Al-Sinawi, Bakir ;
Simpson, Sean D. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (15) :5467-5475
[18]   Fermentative production of ethanol from carbon monoxide [J].
Koepke, Michael ;
Mihalcea, Christophe ;
Bromley, Jason C. ;
Simpson, Sean D. .
CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 (03) :320-325
[19]   Clostridium ljungdahlii represents a microbial production platform based on syngas [J].
Koepke, Michael ;
Held, Claudia ;
Hujer, Sandra ;
Liesegang, Heiko ;
Wiezer, Arnim ;
Wollherr, Antje ;
Ehrenreich, Armin ;
Liebl, Wolfgang ;
Gottschalk, Gerhard ;
Duerre, Peter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (29) :13087-13092
[20]   A Genetic System for Clostridium ljungdahlii: a Chassis for Autotrophic Production of Biocommodities and a Model Homoacetogen [J].
Leang, Ching ;
Ueki, Toshiyuki ;
Nevin, Kelly P. ;
Lovley, Derek R. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (04) :1102-1109