Positive-Definite l1-Penalized Estimation of Large Covariance Matrices

被引:126
作者
Xue, Lingzhou [1 ]
Ma, Shiqian [2 ]
Zou, Hui [3 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[3] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Alternating direction methods; Matrix norm; Positive-definite estimation; Soft-thresholding; Sparsity; 1ST-ORDER METHODS; SPARSE; SELECTION; SET;
D O I
10.1080/01621459.2012.725386
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The thresholding covariance estimator has nice asymptotic properties for estimating sparse large covariance matrices, but it often has negative eigenvalues when used in real data analysis. To fix this drawback of thresholding estimation, we develop a positive-definite l(1)-penalized covariance estimator for estimating sparse large covariance matrices. We derive an efficient alternating direction method to solve the challenging optimization problem and establish its convergence properties. Under weak regularity conditions, nonasymptotic statistical theory is also established for the proposed estimator. The competitive finite-sample performance of our proposal is demonstrated by both simulation and real applications.
引用
收藏
页码:1480 / 1491
页数:12
相关论文
共 38 条
[1]  
Anderson T. W., 1984, An introduction to multivariate statistical analysis, V2nd
[2]  
[Anonymous], 1946, PROBABILITY THEORY
[3]  
[Anonymous], 2010, I MATH STAT ONOGRAPH
[4]  
[Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70028-6
[5]  
[Anonymous], 1989, SIAM STUDIES APPL MA
[6]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[8]   Regularized estimation of large covariance matrices [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (01) :199-227
[9]   COVARIANCE REGULARIZATION BY THRESHOLDING [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (06) :2577-2604
[10]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122