Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries

被引:178
作者
Bai, Zhongchao [1 ]
Ju, Zhicheng [2 ]
Guo, Chunli [1 ]
Qian, Yitai [3 ]
Tang, Bin [1 ]
Xiong, Shenglin [3 ,4 ]
机构
[1] Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Peoples R China
[2] China Univ Min & Technol, Sch Mat Sci & Engn, Xuzhou 221116, Peoples R China
[3] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
[4] CAS Key Lab Mat Energy Convers, Hefei, Peoples R China
基金
美国国家科学基金会;
关键词
FACILE SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; EXCELLENT PERFORMANCE; NANOCOMPOSITE; OXIDES; MANGANESE; NANORODS; FE3O4;
D O I
10.1039/c3nr05676g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hierarchically porous materials are an ideal material platform for constructing high performance Li-ion batteries (LIBs), offering great advantages such as large contact area between the electrode and the electrolyte, fast and flexible transport pathways for the electrolyte ions and the space for buffering the strain caused by repeated Li insertion/extraction. In this work, NiO microspheres with hierarchically porous structures have been synthesized via a facile thermal decomposition method by only using a simple precursor. The superstructures are composed of nanocrystals with high specific surface area, large pore volume, and broad pore size distribution. The electrochemical properties of 3D hierarchical mesoporous NiO microspheres were examined by cyclic voltammetry and galvanostatic charge-discharge studies. The results demonstrate that the as-prepared NiO nanospheres are excellent electrode materials in LIBs with high specific capacity, good retention and rate performance. The 3D hierarchical mesoporous NiO microspheres can retain a reversible capacity of 800.2 mA h g(-1) after 100 cycles at a high current density of 500 mA g(-1).
引用
收藏
页码:3268 / 3273
页数:6
相关论文
共 49 条
[31]   A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-ion batteries [J].
Wang, Y ;
Qin, QZ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (07) :A873-A878
[32]   Nano active materials for lithium-ion batteries [J].
Wang, Yonggang ;
Li, Huiqiao ;
He, Ping ;
Hosono, Eiji ;
Zhou, Haoshen .
NANOSCALE, 2010, 2 (08) :1294-1305
[33]   3D Graphene Foams Cross-linked with Pre-encapsulated Fe3O4 Nanospheres for Enhanced Lithium Storage [J].
Wei, Wei ;
Yang, Shubin ;
Zhou, Haixin ;
Lieberwirth, Ingo ;
Feng, Xinliang ;
Muellen, Klaus .
ADVANCED MATERIALS, 2013, 25 (21) :2909-2914
[34]   Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors [J].
Wu, Hao Bin ;
Pang, Huan ;
Lou, Xiong Wen .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) :3619-3626
[35]   Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries [J].
Wu, Hao Bin ;
Chen, Jun Song ;
Hng, Huey Hoon ;
Lou, Xiong Wen .
NANOSCALE, 2012, 4 (08) :2526-2542
[36]   Template-Free Synthesis of Porous Platinum Networks of Different Morphologies [J].
Xie, Jianping ;
Zhang, Qingbo ;
Zhou, Weijiang ;
Lee, Jim Yang ;
Wang, Daniel I. C. .
LANGMUIR, 2009, 25 (11) :6454-6459
[37]   Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications [J].
Xu, Cailing ;
Zhao, Yongqing ;
Yang, Guangwu ;
Li, Fashen ;
Li, Hulin .
CHEMICAL COMMUNICATIONS, 2009, (48) :7575-7577
[38]   Hydrothermal-synthesized NiO nanowall array for lithium ion batteries [J].
Yan, Xiaoyan ;
Tong, Xili ;
Wang, Jian ;
Gong, Changwei ;
Zhang, Mingang ;
Liang, Liping .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 556 :56-61
[39]   Synthesis of porous and hollow microspheres of nanocrystalline Mn2O3 [J].
Yang, ZH ;
Zhang, WX ;
Wang, Q ;
Song, XM ;
Qian, YT .
CHEMICAL PHYSICS LETTERS, 2006, 418 (1-3) :46-49
[40]   Template-free preparation of mesoporous Fe2O3 and its application as absorbents [J].
Yu, Chichao ;
Dong, Xiaoping ;
Guo, Limin ;
Li, Jiangtian ;
Qin, Fei ;
Zhang, Lingxia ;
Shi, Jianlin ;
Yan, Dongsheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (35) :13378-13382