Temperature dependence of the electron diffusion coefficient in electrolyte-filled TiO2 nanoparticle films:: Evidence against multiple trapping in exponential conduction-band tails -: art. no. 045326

被引:91
作者
Kopidakis, N [1 ]
Benkstein, KD
van de Lagemaat, J
Frank, AJ
Yuan, Q
Schiff, EA
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
关键词
D O I
10.1103/PhysRevB.73.045326
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The temperature and photoexcitation density dependences of the electron transport dynamics in electrolyte-filled mesoporous TiO2 nanoparticle films were investigated by transient photocurrent measurements. The thermal activation energy of the diffusion coefficient of photogenerated electrons ranged from 0.19-0.27 eV, depending on the specific sample studied. The diffusion coefficient also depends strongly on the photoexcitation density; however, the activation energy has little, if any, dependence on the photoexcitation density. The light intensity dependence can be used to infer temperature-independent dispersion parameters in the range 0.3-0.5. These results are inconsistent with the widely used transport model that assumes multiple trapping of electrons in an exponential conduction-band tail. We can also exclude a model allowing for widening of a band tail with increased temperature. Our results suggest that structural, not energetic, disorder limits electron transport in mesoporous TiO2. The analogy between this material and others in which charge transport is limited by structural disorder is discussed.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Conductivity studies of nanostructured TiO2 films permeated with electrolyte [J].
Agrell, HG ;
Boschloo, G ;
Hagfeldt, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12388-12396
[2]   WAS SUPERLOCALIZATION OBSERVED ON A FRACTAL [J].
AHARONY, A ;
ENTINWOHLMAN, O ;
HARRIS, AB .
PHYSICA A, 1993, 200 (1-4) :171-178
[3]   Charge transport model for disordered materials:: Application to sensitized TiO2 -: art. no. 125324 [J].
Anta, JA ;
Nelson, J ;
Quirke, N .
PHYSICAL REVIEW B, 2002, 65 (12) :1-10
[4]  
Benkstein KD, 2003, J PHYS CHEM B, V107, P7759, DOI [10.1021/jp022681l, 10.1021/jp0226811]
[5]   Spectral statistics near the quantum percolation threshold [J].
Berkovits, R ;
Avishai, Y .
PHYSICAL REVIEW B, 1996, 53 (24) :16125-16128
[6]   Dispersive electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy -: art. no. 286601 [J].
Berleb, S ;
Brütting, W .
PHYSICAL REVIEW LETTERS, 2002, 89 (28)
[7]   The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase [J].
Bisquert, J ;
Zaban, A .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 77 (3-4) :507-514
[8]   Dispersive hole transport in poly(p-phenylene vinylene) [J].
Blom, PWM ;
Vissenberg, MCJM .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3819-3822
[9]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[10]   Nanocrystal superlattices [J].
Collier, CP ;
Vossmeyer, T ;
Heath, JR .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 :371-404