Highly doped Si and Ge formed by GILD (gas immersion laser doping); from GILD to superconducting silicon

被引:38
作者
Cammilleri, D. [1 ]
Fossard, F. [1 ]
Debarre, D. [1 ]
Manh, C. Tran [1 ]
Dubois, C. [4 ]
Bustarret, E. [3 ]
Marcenat, C. [2 ]
Achatz, P. [2 ,3 ]
Bouchier, D. [1 ]
Boulmer, J. [1 ]
机构
[1] Univ Paris 11, Inst Elect Fondamentale, CNRS, UMR 8622, F-91405 Orsay, France
[2] CEA, SPSMS, DRFMC, F-38054 Grenoble, France
[3] Inst Neel, CNRS, UPR 2940, F-38042 Grenoble, France
[4] INL, CNRS, UMR 5270, Villeurbanne, France
关键词
Boron; Germanium; GILD; Laser annealing; Laser doping; Phosphorus; Silicon; Superconductivity;
D O I
10.1016/j.tsf.2008.08.073
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gas Immersion Laser Doping (GILD) of silicon with boron has shown excellent performances in terms of junction depth, box-like profile, dopant concentration and activation. The study of the GILD process is extended to boron and phosphorus doping of silicon on insulator (SOI) and of relaxed Ge films epitaxied on Si or on SOL The sheet resistances of Si and Ge doped films are measured as a function of the laser energy density and number of laser pulses. The dopant concentration profiles are measured by Secondary Ion Mass Spectrometry (SIMS) in the case of Ge on SOL Experimental results on Ge show that GILD allows realizing doped layers with sheet resistances of approximate to 10 Omega/square with nearly boxlike depth profiles, in the case of phosphorus, and of approximate to 40 Omega/square with depth profiles peaked near the interface of the undoped Ge, in the case of boron. Finally we show that B doping by GILD allows reaching high enough dopant concentrations to make cubic silicon superconductive. (c) 2008 Elsevier B.V. All rights reserved
引用
收藏
页码:75 / 79
页数:5
相关论文
共 18 条
[1]   Superconductivity in doped cubic silicon [J].
Bustarret, E. ;
Marcenat, C. ;
Achatz, P. ;
Kacmarcik, J. ;
Levy, F. ;
Huxley, A. ;
Ortega, L. ;
Bourgeois, E. ;
Blase, X. ;
Debarre, D. ;
Boulmer, J. .
NATURE, 2006, 444 (7118) :465-468
[2]  
CAMMILLERI D, 2007, THIN SOLID IN PRESS
[3]   Germanium n-type shallow junction activation dependences -: art. no. 091909 [J].
Chui, CO ;
Kulig, L ;
Moran, J ;
Tsai, W ;
Saraswat, KC .
APPLIED PHYSICS LETTERS, 2005, 87 (09)
[4]   Activation and diffusion studies of ion-implanted p and n dopants in germanium [J].
Chui, CO ;
Gopalakrishnan, K ;
Griffin, PB ;
Plummer, JD ;
Saraswat, KC .
APPLIED PHYSICS LETTERS, 2003, 83 (16) :3275-3277
[5]  
FOULON F, 1992, PHOTOCHEMICAL PROCES, P257
[6]   Sub-15 nm n+/p-germanium shallow junction formed by PH3 plasma doping and excimer laser annealing [J].
Heo, S ;
Baek, S ;
Lee, D ;
Hasan, M ;
Jung, H ;
Lee, J ;
Hwang, H .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (04) :G136-G137
[7]   Laser thermal processing using an optical coating for ultra shallow junction formation [J].
Hernandez, M ;
Venturini, J ;
Berard, D ;
Kerrien, G ;
Sarnet, T ;
Débarre, D ;
Boulmer, J ;
Laviron, C ;
Camel, D ;
Santailler, JL ;
Akhouayri, H .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 114 :105-108
[8]   Laser thermal processing for ultra shallow junction formation:: numerical simulation and comparison with experiments [J].
Hernandez, M ;
Venturini, J ;
Zahorski, D ;
Boulmer, J ;
Débarre, D ;
Kerrien, G ;
Sarnet, T ;
Laviron, C ;
Semeria, MN ;
Camel, D ;
Santailler, JL .
APPLIED SURFACE SCIENCE, 2003, 208 :345-351
[9]   Germanium n+/p junction formation by laser thermal process -: art. no. 173507 [J].
Huang, JD ;
Wu, N ;
Zhang, QC ;
Zhu, CX ;
Tay, AAO ;
Chen, GX ;
Hong, MH .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[10]   Gas immersion laser doping (GILD) for ultra-shallow junction formation [J].
Kerrien, G ;
Sarnet, T ;
Débarre, D ;
Boulmer, J ;
Hernandez, M ;
Laviron, C ;
Semeria, MN .
THIN SOLID FILMS, 2004, 453 :106-109