Endemic infections are always possible on regular networks

被引:15
作者
Del Genio, Charo I. [1 ,2 ,3 ,4 ]
House, Thomas [1 ,2 ,3 ]
机构
[1] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, WIDER Ctr, Coventry CV4 7AL, W Midlands, England
[4] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
COMPLEX NETWORKS; LATTICE MODELS; RANDOM GRAPHS; EPIDEMIC; DYNAMICS; SPREAD; INDIVIDUALS; BEHAVIOR;
D O I
10.1103/PhysRevE.88.040801
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the dependence of the largest component in regular networks on the clustering coefficient, showing that its size changes smoothly without undergoing a phase transition. We explain this behavior via an analytical approach based on the network structure, and provide an exact equation describing the numerical results. Our work indicates that intrinsic structural properties always allow the spread of epidemics on regular networks.
引用
收藏
页数:5
相关论文
共 43 条
[1]  
Abdullah Mohammed, 2011, Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques. Proceedings 14th International Workshop, APPROX 2011 and 15th International Workshop, RANDOM 2011, P351, DOI 10.1007/978-3-642-22935-0_30
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
[Anonymous], 1968, An introduction to probability theory and its applications
[4]   A network with tunable clustering, degree correlation and degree distribution, and an epidemic thereon [J].
Ball, Frank ;
Britton, Tom ;
Sirl, David .
JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 66 (4-5) :979-1019
[5]   Analysis of a stochastic SIR epidemic on a random network incorporating household structure [J].
Ball, Frank ;
Sirl, David ;
Trapman, Pieter .
MATHEMATICAL BIOSCIENCES, 2010, 224 (02) :53-73
[6]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[7]   Sparse Random Graphs with Clustering [J].
Bollobas, Bela ;
Janson, Svante ;
Riordan, Oliver .
RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (03) :269-323
[8]   EPIDEMICS ON RANDOM GRAPHS WITH TUNABLE CLUSTERING [J].
Britton, Tom ;
Deijfen, Maria ;
Lageras, Andreas N. ;
Lindholm, Mathias .
JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) :743-756
[9]  
Danon L., 2011, Interdisciplinary Perspectives on Infectious Diseases, V2011, P284909, DOI 10.1155/2011/284909
[10]   All Scale-Free Networks Are Sparse [J].
Del Genio, Charo I. ;
Gross, Thilo ;
Bassler, Kevin E. .
PHYSICAL REVIEW LETTERS, 2011, 107 (17)