Time evolution of the reaction front in a subdiffusive system

被引:26
作者
Kosztolowicz, Tadeusz [1 ]
Lewandowska, Katarzyna D. [2 ]
机构
[1] Jan Kochanowski Univ Humanities & Sci, Inst Phys, PL-25406 Kielce, Poland
[2] Med Univ Gdansk, Dept Radiol Informat & Stat, PL-80210 Gdansk, Poland
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
关键词
D O I
10.1103/PhysRevE.78.066103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the quasistatic approximation, we show that in a subdiffusion-reaction system with arbitrary nonzero values of subdiffusion coefficients, the reaction front x(f)(t) evolves in time as x(f)(t) =Kt(alpha/2), with alpha being the subdiffusion parameter and K being controlled by the subdiffusion coefficients. To check the correctness of our analysis, we compare approximate analytical solutions of the subdiffusion-reaction equations with the numerical ones.
引用
收藏
页数:11
相关论文
共 38 条
[1]   SCALING OF REACTION FRONTS UNDER QUENCHED DISORDER [J].
ARAUJO, M .
PHYSICA A, 1995, 219 (3-4) :239-245
[2]   Asymptotics of reaction-diffusion fronts with one static and one diffusing reactant [J].
Bazant, MZ ;
Stone, HA .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 147 (1-2) :95-121
[3]  
Ben-Avraham D, 2000, Diffusion and reactions in fractals and disordered systems
[4]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[5]   DYNAMIC MULTISCALING OF THE REACTION-DIFFUSION FRONT FOR MA+NB-]O [J].
CORNELL, S ;
KOZA, Z ;
DROZ, M .
PHYSICAL REVIEW E, 1995, 52 (04) :3500-3505
[6]   STEADY-STATE REACTION-DIFFUSION FRONT SCALING FOR MA+NB -] [INERT] [J].
CORNELL, S ;
DROZ, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (24) :3824-3827
[7]   Exotic reaction fronts in the steady state [J].
Cornell, S ;
Droz, M .
PHYSICA D, 1997, 103 (1-4) :348-356
[8]   Stationary fronts in an A+B→0 reaction under subdiffusion [J].
Froemberg, Daniela ;
Sokolov, Igor M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[9]   PROPERTIES OF THE REACTION FRONT IN AN A+B-]C TYPE REACTION-DIFFUSION PROCESS [J].
GALFI, L ;
RACZ, Z .
PHYSICAL REVIEW A, 1988, 38 (06) :3151-3154
[10]   Time fractional diffusion: A discrete random walk approach [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Paradisi, P .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :129-143