Time fractional diffusion: A discrete random walk approach

被引:316
作者
Gorenflo, R
Mainardi, F
Moretti, D
Paradisi, P
机构
[1] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
[3] Free Univ Berlin, Erstes Math Inst, D-14195 Berlin, Germany
[4] CRIBISNET SpA, I-40131 Bologna, Italy
[5] ISAC, Ist Sci Atmosfera Clima, Sez Lecce, I-73100 Lecce, Italy
关键词
anomalous diffusion; random walks; fractional derivatives; stochastic processes; self-similarity;
D O I
10.1023/A:1016547232119
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order beta is an element of (0, 1). From a physical view-point this generalized diffusion equation is obtained from a fractional Fick law which describes transport processes with long memory. The fundamental solution for the Cauchy problem is interpreted as a probability density of a self-similar non-Markovian stochastic process related to a phenomenon of slow anomalous diffusion. By adopting a suitable finite-difference scheme of solution, we generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation.
引用
收藏
页码:129 / 143
页数:15
相关论文
共 40 条
[1]  
AHN VV, 2001, J STAT PHYS, V104, P1349
[2]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[3]  
Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
[4]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[5]  
Caputo M., 1969, Elasticitae dissipazione
[6]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[7]  
Feller W., 1952, MEDDELANDEN LUNDS S, P73, DOI DOI 10.1186/S13662-017-1354-4
[8]  
Feller W., 1971, An introduction to probability theory and its applications, V2
[9]   Discrete random walk models for symmetric Levy-Feller diffusion processes [J].
Gorenflo, R ;
De Fabritiis, G ;
Mainardi, F .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 269 (01) :79-89
[10]   Fractional diffusion: probability distributions and random walk models [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Pagnini, G ;
Paradisi, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :106-112