Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm

被引:54
作者
Shin, YM
Park, HJ
Yim, SD
Baek, NI
Lee, CH
An, GH
Woo, YM
机构
[1] Kumho Life & Environm Sci Lab, Kwangju 500712, South Korea
[2] Kyung Hee Univ, Dept Chem & Genet Engn, Suwon 449701, South Korea
[3] Kyung Hee Univ, Plant Metab Res Ctr, Suwon 449701, South Korea
[4] Korea Res Inst Biosci & Biotechnol, Immune Modulator Res Lab, Taejon 305333, South Korea
[5] Pohang Univ Sci & Technol, Div Mol & Life Sci, Lab Plant Funct Genom, Pohang 790784, South Korea
[6] Gyeongsang Natl Univ, Environm Biotechnol Res Ctr, Jinju 660701, South Korea
关键词
antioxidant; dihydroflavonols; endosperm; flavonoids; genetic engineering; rice;
D O I
10.1111/j.1467-7652.2006.00182.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Flavonoids, compounds that possess diverse health-promoting benefits, are lacking in the endosperm of rice. Therefore, to develop transgenic lines that produce flavonoids, we transformed a white rice cultivar, Oryza sativa japonica cv. Hwa-Young, with maize C1 and R-S regulatory genes. Expression of these transgenes was restricted to the endosperm using the promoter of a rice prolamin gene. The pericarp of the C1/R-S homozygous lines became dark brown in accordance with their maternal genotype, whereas the endosperm turned chalky, similar to the opaque kernel phenotype. Analysis via high-performance liquid chromatography (HPLC) revealed that numerous kinds of flavonoids were produced in these transgenic kernels. To identify individual flavonoids, the number of HPLC peaks was reduced through moderate acid hydrolysis, followed by ethyl acetate partitioning. Amongst the major flavonoids, dihydroquercetin (taxifolin), dihydroisorhamnetin (3'-O-methyl taxifolin) and 3'-O-methyl quercetin were identified through liquid chromatography/mass spectrometry/mass spectrometry and nuclear magnetic resonance analyses. Fluorescence labelling with diphenylboric acid showed that the flavonoids were highly concentrated in the cells of four to five outer endosperm layers. More importantly, a high fluorescence signal was present in the cytosol of the inner endosperm layers. However, the overall signal in the inner layers was significantly lower because starch granules and protein bodies occupied most of the cytosolic space. Our estimate of the total flavonoid content in the transgenic kernels suggests that C1/R-S rice has the potential to be developed further as a novel variety that can produce various flavonoids in its endosperm.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 31 条
[1]  
An G., 1988, PLANT MOL BIOL MAN A, VA3, P1
[2]   High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1 [J].
Bovy, A ;
de Vos, R ;
Kemper, M ;
Schijlen, E ;
Pertejo, MA ;
Muir, S ;
Collins, G ;
Robinson, S ;
Verhoeyen, M ;
Hughes, S ;
Santos-Buelga, C ;
van Tunen, A .
PLANT CELL, 2002, 14 (10) :2509-2526
[3]   Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P [J].
Bruce, W ;
Folkerts, O ;
Garnaat, C ;
Crasta, O ;
Roth, B ;
Bowen, B .
PLANT CELL, 2000, 12 (01) :65-79
[4]   The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light [J].
Buer, CS ;
Muday, GK .
PLANT CELL, 2004, 16 (05) :1191-1205
[5]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995
[6]   Flavonoids and isoflavonoids - a gold mine for metabolic engineering [J].
Dixon, RA ;
Steele, CL .
TRENDS IN PLANT SCIENCE, 1999, 4 (10) :394-400
[7]   Inhibitory effect of traditional Turkish folk medicines on aldose reductase (AR) and hematological activity, and on AR inhibitory activity of quercetin-3-O-methyl ether isolated from Cistus laurifolius L. [J].
Enomoto, S ;
Okada, Y ;
Güvenc, A ;
Erdurak, CS ;
Coskun, M ;
Okuyama, T .
BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2004, 27 (07) :1140-1143
[8]   GREEN TEA COMPOSITION, CONSUMPTION, AND POLYPHENOL CHEMISTRY [J].
GRAHAM, HN .
PREVENTIVE MEDICINE, 1992, 21 (03) :334-350
[9]   Engineering secondary metabolism in maize cells by ectopic expression of transcription factors [J].
Grotewold, E ;
Chamberlin, M ;
Snook, M ;
Siame, B ;
Butler, L ;
Swenson, J ;
Maddock, S ;
Clair, GS ;
Bowen, B .
PLANT CELL, 1998, 10 (05) :721-740
[10]   GENETICS AND BIOCHEMISTRY OF ANTHOCYANIN BIOSYNTHESIS [J].
HOLTON, TA ;
CORNISH, EC .
PLANT CELL, 1995, 7 (07) :1071-1083