Analysis of air quality monitoring networks by functional clustering

被引:70
作者
Ignaccolo, R. [1 ]
Ghigo, S. [1 ]
Giovenali, E. [1 ]
机构
[1] Univ Turin, Dipartimento Stat & Matemat Applicata Diego Castr, Turin, Italy
关键词
functional data; B-spline; cluster analysis; PAM; atmospheric pollution;
D O I
10.1002/env.946
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Air quality monitoring networks are important tools in management and evaluation of air quality. Classifying monitoring stations via homogeneous clusters allows identification of similarities in pollution, of representative sites, and of spatial patterns. Instead of summaries by statistical indicators, we propose to consider the air pollutant concentrations as functional data. We then classify using functional cluster analysis, where Partitioning Around Medoids (PAM) algorithm is embedded. The proposed data analysis approach is applied to the air quality monitoring network in Piemonte (Northern Italy); we consider the three more critical pollutants: NO2, PM10, and O-3. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:672 / 686
页数:15
相关论文
共 17 条
[1]   Unsupervised curve clustering using B-splines [J].
Abraham, C ;
Cornillon, PA ;
Matzner-Lober, E ;
Molinari, N .
SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) :581-595
[2]   ON POLYA FREQUENCY FUNCTIONS .4. FUNDAMENTAL SPLINE FUNCTIONS AND THEIR LIMITS [J].
CURRY, HB ;
SCHOENBERG, IJ .
JOURNAL D ANALYSE MATHEMATIQUE, 1966, 17 :71-+
[3]  
De Boor C., 2001, PRACTICAL GUIDE SPLI
[4]   A methodology for seasonal photochemical model simulation assessment [J].
Gabusi, V ;
Volta, M .
INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2005, 24 (1-4) :11-21
[5]  
GHIGO S, 2006, 26 GRASPA
[6]   Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and Ozone data [J].
Gramsch, E. ;
Cereceda-Balic, F. ;
Oyola, P. ;
von Baer, D. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (28) :5464-5475
[7]   Analytical determination and classification of pollutant concentration fields using air pollution monitoring network data - Methodology and application in the Paris area, during episodes with peak nitrogen dioxide levels [J].
Ionescu, A ;
Candau, Y ;
Mayer, E ;
Colda, I .
ENVIRONMENTAL MODELLING & SOFTWARE, 2000, 15 (6-7) :565-573
[8]  
Kaufman L., 2009, Finding groups in data: An introduction to cluster analysis
[9]   The ozone patterns in the aerological basin of Milan (Italy) [J].
Lavecchia, C ;
Angelino, E ;
Bedogni, M ;
Bravetti, E ;
Gualdi, R ;
Lanzani, G ;
Musitelli, A ;
Valentini, M .
ENVIRONMENTAL SOFTWARE, 1996, 11 (1-3) :73-80
[10]   CLASSIFICATION OF OZONE AND WEATHER PATTERNS ASSOCIATED WITH HIGH OZONE CONCENTRATIONS IN THE SAN-FRANCISCO AND MONTEREY BAY AREAS [J].
LUDWIG, FL ;
JIANG, JY ;
CHEN, J .
ATMOSPHERIC ENVIRONMENT, 1995, 29 (21) :2915-2928