On increasing subsequences of IID samples

被引:46
作者
Deuschel, JD
Zeitouni, O
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
D O I
10.1017/S0963548399003776
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the fluctuations, in the large deviations regime, of the longest increasing subsequence of a random i.i.d. sample on the unit square. In particular, our results yield the precise upper and lower exponential tails for the length of the longest increasing subsequence of a random permutation.
引用
收藏
页码:247 / 263
页数:17
相关论文
共 10 条
[1]   HAMMERSLEYS INTERACTING PARTICLE PROCESS AND LONGEST INCREASING SUBSEQUENCES [J].
ALDOUS, D ;
DIACONIS, P .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 103 (02) :199-213
[2]  
BOLLOB\AS B., 1992, ANN APPL PROBAB, V2, P1009
[3]  
DEUSCHEL JD, 1995, ANN PROBAB, V23, P852, DOI 10.1214/aop/1176988293
[4]   MANY MULTIVARIATE RECORDS [J].
GOLDIE, CM ;
RESNICK, SI .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 59 (02) :185-216
[5]   VARIATIONAL PROBLEM FOR RANDOM YOUNG TABLEAUX [J].
LOGAN, BF ;
SHEPP, LA .
ADVANCES IN MATHEMATICS, 1977, 26 (02) :206-222
[6]   Large deviations for increasing sequences on the plane [J].
Seppalainen, T .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (02) :221-244
[7]  
TALAGRAND M, 1995, PUBLICATIONS IHES, V81, P73
[8]   ASYMPTOTIC OF THE LARGEST AND THE TYPICAL DIMENSIONS OF IRREDUCIBLE REPRESENTATIONS OF A SYMMETRIC GROUP [J].
VERSHIK, AM ;
KEROV, SV .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1985, 19 (01) :21-31
[9]  
VERSHIK AM, 1977, DOKL AKAD NAUK SSSR+, V233, P1024
[10]  
[No title captured]