Adaptation, extinction and global change

被引:207
作者
Bell, Graham [1 ,2 ]
Collins, Sinead [3 ]
机构
[1] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada
[2] Univ London Imperial Coll Sci Technol & Med, NERC Ctr Populat Biol, Ascot, Berks, England
[3] Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland
来源
EVOLUTIONARY APPLICATIONS | 2008年 / 1卷 / 01期
基金
英国自然环境研究理事会;
关键词
carbon cycle; CO2; environmental variability; evolutionary rescue; rapid evolution; stressful environment;
D O I
10.1111/j.1752-4571.2007.00011.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss three interlinked issues: the natural pace of environmental change and adaptation, the likelihood that a population will adapt to a potentially lethal change, and adaptation to elevated CO2, the prime mover of global change. 1. Environmental variability is governed by power laws showing that ln difference in conditions increases with ln elapsed time at a rate of 0.3-0.4. This leads to strong but fluctuating selection in many natural populations. 2. The effect of repeated adverse change on mean fitness depends on its frequency rather than its severity. If the depression of mean fitness leads to population decline, however, severe stress may cause extinction. Evolutionary rescue from extinction requires abundant genetic variation or a high mutation supply rate, and thus a large population size. Although natural populations can sustain quite intense selection, they often fail to adapt to anthropogenic stresses such as pollution and acidification and instead become extinct. 3. Experimental selection lines of algae show no specific adaptation to elevated CO2, but instead lose their carbon-concentrating mechanism through mutational degradation. This is likely to reduce the effectiveness of the oceanic carbon pump. Elevated CO2 is also likely to lead to changes in phytoplankton community composition, although it is not yet clear what these will be. We emphasize the importance of experimental evolution in understanding and predicting the biological response to global change. This will be one of the main tasks of evolutionary biologists in the coming decade.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 98 条
[31]   THE ROLE OF PHYTOPLANKTON PHOTOSYNTHESIS IN GLOBAL BIOGEOCHEMICAL CYCLES [J].
FALKOWSKI, PG .
PHOTOSYNTHESIS RESEARCH, 1994, 39 (03) :235-258
[32]  
Fisher R. A., 1999, The Genetical Theory of Natural Selection: A Complete Variorum Edition
[33]  
FRANKHAM R, 2004, RESPONSE ENV CHANGE, P85
[34]   Do population size bottlenecks reduce evolutionary potential? [J].
Frankham, Richard ;
Lees, Kelly ;
Montgomery, Margaret E. ;
England, Phillip R. ;
Lowe, Edwin H. ;
Briscoe, David A. .
ANIMAL CONSERVATION, 1999, 2 (04) :255-260
[35]   Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria) [J].
Fu, Fei-Xue ;
Warner, Mark E. ;
Zhang, Yaohong ;
Feng, Yuanyuan ;
Hutchins, David A. .
JOURNAL OF PHYCOLOGY, 2007, 43 (03) :485-496
[36]   Predation and disturbance interact to shape prey species diversity [J].
Gallet, Romain ;
Alizon, Samuel ;
Comte, Pierre-Arnaud ;
Gutierrez, Arnaud ;
Depaulis, Frantz ;
van Baalen, Minus ;
Michel, Eric ;
Muller-Graf, Christine D. M. .
AMERICAN NATURALIST, 2007, 170 (01) :143-154
[37]  
GILLESPIE JH, 1984, EVOLUTION, V38, P1116, DOI 10.1111/j.1558-5646.1984.tb00380.x
[38]  
GOMULKIEWICZ R, 1995, EVOLUTION, V49, P201, DOI 10.1111/j.1558-5646.1995.tb05971.x
[39]   Unpredictable evolution in a 30-year study of Darwin's finches [J].
Grant, PR ;
Grant, BR .
SCIENCE, 2002, 296 (5568) :707-711
[40]   Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent [J].
Green, RE ;
Newton, I ;
Shultz, S ;
Cunningham, AA ;
Gilbert, M ;
Pain, DJ ;
Prakash, V .
JOURNAL OF APPLIED ECOLOGY, 2004, 41 (05) :793-800