Spectral approximation orders of radial basis function interpolation on the Sobolev space

被引:93
作者
Yoon, J [1 ]
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
radial basis function; interpolation; Sobolev space; positive definite function; multiquadric; shifted" surface spline;
D O I
10.1137/S0036141000373811
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we are mainly interested in error estimates of interpolation, using smooth radial basis functions such a multiquadrics. The current theories of radial basis function interpolation provide optimal error bounds when the basis function phi is smooth and the approximand f is in a certain reproducing kernel Hilbert space F-phi. However, since the space F-phi is very small when the function phi is smooth, the major concern of this paper is to prove approximation orders of interpolation to functions in the Sobolev space. For instance, when phi is a multiquadric, we will observe the error bound o(h(k)) if the function to be approximated is in the Sobolev space of smoothness order k.
引用
收藏
页码:946 / 958
页数:13
相关论文
共 23 条
  • [1] Abramowitz M., 1970, HDB MATH FUNCTIONS
  • [2] REGARDING THE P-NORMS OF RADIAL BASIS INTERPOLATION MATRICES
    BAXTER, BJC
    SIVAKUMAR, N
    WARD, JD
    [J]. CONSTRUCTIVE APPROXIMATION, 1994, 10 (04) : 451 - 468
  • [3] Brenner S. C., 2007, Texts Appl. Math., V15
  • [4] SPECTRAL CONVERGENCE OF MULTIQUADRIC INTERPOLATION
    BUHMANN, M
    DYN, N
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1993, 36 : 319 - 333
  • [5] Buhmann M.D., 1993, Multivariate Approximation: from CAGD to Wavelets, P35
  • [6] Dyn N., 1989, APPROXIMATION THEORY, VVI, P211, DOI DOI 10.1007/BF01203417
  • [7] Gelfand I, 1964, GEN FUNCTIONS, V1
  • [8] Light W. A., 1995, WAVELET ANAL APPROXI, P215
  • [9] Madych W.R., 1988, Approx. Theory Appl, V4, P77, DOI [10.1090/S0025-5718-1990-0993931-7, DOI 10.1090/S0025-5718-1990-0993931-7]
  • [10] BOUNDS ON MULTIVARIATE POLYNOMIALS AND EXPONENTIAL ERROR-ESTIMATES FOR MULTIQUADRIC INTERPOLATION
    MADYCH, WR
    NELSON, SA
    [J]. JOURNAL OF APPROXIMATION THEORY, 1992, 70 (01) : 94 - 114